综述

软管式自主空中加油对接阶段中的建模与控制综述

  • 全权 ,
  • 魏子博 ,
  • 高俊 ,
  • 张瑞峰 ,
  • 蔡开元
展开
  • 1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191;
    2. 北京航空航天大学 虚拟现实技术与系统国家重点实验室, 北京 100191;
    3. 中国人民解放军空军司令部 军训部, 北京 100843;
    4. 北京航空工程技术研究中心, 北京 100076
全权 男,博士,副教授,硕士生导师。主要研究方向:可靠飞行控制,视觉导航,重复学习控制,时滞系统。Tel:010-82338464 E-mail:qq_buaa@buaa.edu.cn;魏子博 男,博士研究生。主要研究方向:精确飞行控制,空中加油。Tel:010-82338464 E-mail:whisper_buaa@asee.buaa.edu.cn ;高俊 男,教授。主要研究方向:飞行员航空理论教育训练,飞行安全管理,飞行中人的因素。Tel:010-51982392 E-mail:141698105@qq.com;张瑞峰 男,博士,工程师。主要研究方向:航空理论教学和航空工程技术研究,可靠飞行控制及飞行器的安全性分析与评估。Tel:010-66713299 E-mail:thisway030217@163.com;蔡开元 男,博士,教授,博士生导师。主要研究方向:软件可靠性与测试,可靠飞行控制,软件控制论。Tel:010-82317328 E-mail:kycai@buaa.edu.cn

收稿日期: 2013-10-28

  修回日期: 2014-05-06

  网络出版日期: 2014-05-23

基金资助

国家自然科学基金(61104012,51375462);国家国际科技合作专项项目(2014DFR70650);高等学校博士学科点专项科研基金(20111102120008);北京高校"青年英才计划"(YETP1071)

A Survey on Modeling and Control Problems for Probe and Drogue Autonomous Aerial Refueling at Docking Stage

  • QUAN Quan ,
  • WEI Zibo ,
  • GAO Jun ,
  • ZHANG Ruifeng ,
  • CAI Kaiyuan
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
    2. State Key Laboratory of Virtual Reality Technology and System, Beihang University, Beijing 100191, China;
    3. Military Training Department, Headquarters of People's Liberation Army Air Force, Beijing 100843, China;
    4. Beijing Aeronautical Engineering Technology Research Center, Beijng 100076, China

Received date: 2013-10-28

  Revised date: 2014-05-06

  Online published: 2014-05-23

Supported by

National Natural Science Foundation of China (61104012, 51375462); International S&T Coorperation Program of China (2014DFR70650); Research Fund for the Doctoral Program of Higher Education of China (20111102120008); "Young Elite" of High Schools in Beijing (YETP1071)

摘要

软管式自主空中加油(PDAAR)在军用和民用上有着十分重要的意义。软管式自主空中加油的对接阶段是所有阶段中精度要求最高和控制难度最大的一个阶段,其建模与控制问题具有代表性和挑战性。首先,介绍了自主空中加油(AAR)的基本概念及意义,并总结了自主空中对接控制的特点和要求。随后,系统性地梳理了AAR对接阶段中的建模和控制问题,概述了国内外文献中研究该问题的方法,并提炼了该领域依旧存在的问题。进一步,简要分析和综述了国内外AAR飞行验证情况。最后,针对建模、控制和决策,从工程实践角度分析并总结了自主对接未来可能的工作,从科学研究的角度总结了6个重点研究的科学问题。

本文引用格式

全权 , 魏子博 , 高俊 , 张瑞峰 , 蔡开元 . 软管式自主空中加油对接阶段中的建模与控制综述[J]. 航空学报, 2014 , 35(9) : 2390 -2410 . DOI: 10.7527/S1000-6893.2014.0092

Abstract

Probe and drogue autonomous aerial refueling (PDAAR) plays a critical role in the military and civil fields. At all stages of PDAAR, the docking stage requires the highest precision, which therefore causes greatest difficulty to the controller design. So the modeling and control problems for docking stage are very typical and challenging. In this paper, the concept and significance of autonomous aerial refueling (AAR) are introduced at first, and the characteristics and requirements of AAR are summarized. Then, the control methods of the AAR's docking stage and the corresponding existing problems are sequentially surveyed and pointed out. Furthermore, flight test for AAR is also analyzed and surveyed briefly. Finally, with respect to modeling, control and decision of autonomous aerial docking, the possible future work is analyzed and summarized for engineering practice, while six important scientific problems are also proposed.

参考文献

[1] Liu X F, Jiang J C, Gao Y K. Speed up the development of aerial refueling to promote the effectiveness of aerial combat[J]. Aircraft Engineering, 2003, 3(1): 7-11.(in Chinese) 刘小锋, 蒋军昌, 高亚奎. 加快发展空中加油技术提升我军空中作战效能[J]. 飞机工程, 2003, 3(1): 7-11.

[2] Bennington M A, Visser K D. Aerial refueling implications for commercial aviation[J]. Journal of Aircraft, 2005, 42(2): 366-375.

[3] Mu C D, Li B R. Vision-based autonomous aerial refueling[J]. Journal of Tsinghua University: Science & Technology, 2012, 52(5): 670-676.(in Chinese) 暮春棣, 李波睿, 基于视觉的自动空中加油技术[J]. 清华大学学报: 自然科学版, 2012, 52(5):670-676.

[4] Ward E F, Calif S A. Hose and drogue boom refueling system, for aircraft: USA, US5573206[P]. 1996-11-12.

[5] Xu Y L. The debate between probe and drogue aerial refueling and flying boom aerial refueling[J]. World Military, 2009(1): 14-19.(in Chinese) 徐勇凌. 空中加油的"软硬"之争[J]. 世界军事, 2009(1): 14-19.

[6] Dong X M, Xu Y J, Chen B. Progress and challenges in automatic aerial refueling[J]. Journal of Air Force Engineering University: Natural Science Edition, 2008, 9(6): 1-5. (in Chinese) 董新民, 徐跃鉴, 陈博. 自动空中加油技术研究进展与关键问题[J]. 空军工程大学学报: 自然科学版, 2008, 9(6): 1-5.

[7] Cambone S A, Krieg K J, Pace P, et al. Unmanned aircraft systems roadmap, 2005-2030[R]. Washington, D. C.: Office of the Secretary of Defense, Department of Defense of the United States of America, 2005.

[8] Jiang H Y, Li W C, Xiao M. Research on UAV autonomous air refueling technology[J]. Aeronautical Science & Technology, 2011(1): 35-38. (in Chinese) 蒋红岩, 李文川, 肖铭. 无人机自主空中加油技术探究[J]. 航空科学技术, 2011(1): 35-38.

[9] Dogan A, Blake W, Haag C. Bow wave effect in aerial refueling: computational analysis and modeling[J]. Journal of Aircraft, 2013, 50(6): 1856-1868.

[10] Bhandari U, Thomas P R, Bullock S, et al. Bow wave effect in probe and drogue aerial refueling, AIAA-2013-4695[R]. Reston: AIAA, 2013.

[11] Dibley R P, Allen M J, Nabaa N. Autonomous airborne refueling demonstration phase I flight-test results, AIAA-2007-6639[R]. Reston: AIAA, 2007.

[12] Ro K, Kuk T, Kamman J W. Active control of aerial refueling hose-drogue systems, AIAA-2010-8400[R]. Reston: AIAA, 2010.

[13] Hoagg J B, Bernstein D S. Nonminimum-phase zeros-much to do about nothing-classical control-revisited part Ⅱ[J]. IEEE Control Systems Magazine, 2007, 27(3): 45-57.

[14] Benvenuti L, di Benedetto M D, Grizzle J W. Approximate output tracking for nonlinear non-minimum phase systems with an application to flight control[J]. International Journal of Robust and Nonlinear Control, 1994, 4(3): 397-414.

[15] Doebbler J, Spaeth T, Valasek J, et al. Boom and receptacle autonomous air refueling using visual snake optical sensor[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(6): 1753-1769.

[16] Stevens B L, Lewis F L. Aircraft control and simulation[M]. Hoboken: John Wiley & Sons, 2003: 116-137.

[17] Bloy A W, Khan M M. Modeling of the receiver aircraft in air-to-air refueling[J]. Journal of Aircraft, 2001, 38(2): 393-396.

[18] Barfield A F, Hinchman J L. An equivalent model for UAV automated aerial refueling research, AIAA-2005-6006[R]. Reston: AIAA, 2005.

[19] Guo J, Dong X M, Wang L, et al. Modeling and control of UCAV with varying mass in autonomous aerial refueling[J]. Flight Dynamics, 2011, 29(6): 35-40. (in Chinese) 郭军, 董新民, 王龙, 等. 自主空中加油变质量无人机建模与控制[J]. 飞行力学, 2011, 29(6): 35-40.

[20] Wei Z B, Quan Q, Cai K Y. Research on relationship between drogue position and interference force for probe-drogue aerial refueling system based on link-connected model[C]//The 31st Chinese Control Conference. Piscataway: IEEE, 2012: 1777-1782. (in Chinese) 魏子博, 全权, 蔡开元. 基于连杆模型的锥管-锥套式空中加油的锥套位置与干扰力关系的研究[C]//第31届中国控制会议. Piscataway: IEEE, 2012: 1777-1782.

[21] Vassberg J C, Yeh D T, Blair A J, et al. Dynamic characteristics of a KC-10 wing-pod refueling hose by numerical simulation, AIAA-2002-2712[R]. Reston: AIAA, 2002.

[22] Vassberg J C, Yeh D T, Blair A J, et al. Numerical simulations of KC-10 wing-mount aerial refueling hose-drogue dynamics with a reel take-up system, AIAA-2003-3508[R]. Reston: AIAA, 2003.

[23] Ribbens W B, Saggio F, Wierenga R, et al. Dynamic modeling of an aerial refueling hose & drogue system, AIAA-2007-3802[R]. Reston: AIAA, 2007.

[24] Zhu Z H, Meguid S A. Elastodynamic analysis of aerial refueling hose using curved beam element[J]. AIAA Journal, 2006, 44(6): 1317-1324.

[25] Styuart A V, Yamashiro H, Stirling R, et al. Numerical simulation of hose whip phenomenon in aerial refueling, AIAA-2011-6211[R]. Reston: AIAA, 2011.

[26] Hayashibara S, Austin J, Reed E, et al. Simulation-based design (SBD) applications for a mid-air aerial refueling paradrogue system, AIAA-2006-7770[R]. Reston: AIAA, 2006.

[27] Ro K, Kamman J W. Modeling and simulation of hose-paradrogue aerial refueling systems[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 53-63.

[28] Ro K, Kuk T, Kamman J W. Dynamics and control of hose-drogue refueling systems during coupling[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(6): 1694-1708.

[29] Williamson W R, Reed E, Glenn G J, et al. Controllable drogue for automated aerial refueling[J]. Journal of Aircraft, 2010, 47(2): 515-527.

[30] Ro K, Kuk T, Kamman J W. Design, test and evaluation of an actively stabilized drogue refueling system, AIAA-2011-1423[R]. Reston: AIAA, 2011.

[31] Wang W, Liu X C, Wang P. Dynamics of hose-drogue refueling systems during coupling[J]. Flight Dynamics, 2013, 31(2): 180-183. (in Chinese) 王伟, 刘喜藏, 王鹏. 空中加油对接过程软管-锥套动态特性[J]. 飞行力学, 2013, 31(2): 180-183.

[32] Wang W, Liu X C, Wang P, et al. Dynamic modeling and simulation of aerial refueling hose-drogue[J]. Electronic Design Engineering, 2012, 20(17): 135-137. (in Chinese) 王伟, 刘喜藏, 王鹏, 等. 空中加油软管-锥套动态建模与仿真[J]. 电子设计工程, 2012, 20(17): 135-137.

[33] J-10 fails in the first aerial refueling test with the probe being broken[Z/OL]. (2012-07-15)[2013-10-23]. http:[C]//v.youku.com/v_show/id_XNDI0MDg3ODQw.html. (in Chinese) J-10首次空中加油失败, 受油锥管折断[Z/OL]. (2012-07-15)[2013-10-23]. http:[C]//v.youku.com/v_show/id_XNDI0MDg3ODQw.html.

[34] Vachon M J, Ray R J, Calianno C. Calculated drag of an aerial refueling assembly through airplane performance analysis, NASA/TM-2004-212043[R]. Washington, D. C.: NASA, 2004.

[35] Hansen J L, Murray J E, Campos N V. The NASA dryden AAR project: a flight test approach to an aerial refueling system, AIAA-2004-4939[R]. Reston: AIAA, 2004.

[36] Burns R S, Clark C S, Ewart R. The automated aerial refueling simulation at the AVTAS Laboratory, AIAA-2005-6008[R]. Reston: AIAA, 2005.

[37] Hu M Q, Liu P, Nie X, et al. Influence of air turbulence on the movement of hose-drogue[J]. Flight Dynamics, 2010, 28(5): 20-23. (in Chinese) 胡孟权, 柳平, 聂鑫, 等. 大气紊流对空中加油软管锥套运动的影响[J]. 飞行力学, 2010, 28(5): 20-23.

[38] Cheng Z, Yu F Y. Modeling and simulation of receiver aircraft disturbance characteristics[J]. Ordnance Industry Automation, 2013, 32(10): 8-11. (in Chinese) 程钊, 于方圆. 受油机扰动特性的建模与仿真[J]. 兵工自动化, 2013, 32(10): 8-11.

[39] United States Department of Defense. MIL-HDBK-1797 flying qualities of piloted aircraft[S]. Washington, D. C.: U.S. Department of Defense, 1997.

[40] United States Department of Defense. MIL-F-8785C flying qualities of piloted airplanes[S]. Washington, D. C.: U. S. Department of Defense, 1997.

[41] Gerz T, Holzpfel F, Darracq D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208.

[42] Venkataramanan S, Dogan A, Blake W. Vortex effect modelling in aircraft formation flight, AIAA-2003-5385[R]. Reston: AIAA, 2003.

[43] Blake W B, Dickes E G, Gingras D R. UAV aerial refueling-wind tunnel results and comparison with analytical predictions, AIAA-2004-4820[R]. Reston: AIAA, 2004.

[44] Dogan A, Lewis T A, Blake W. Wake-vortex induced wind with turbulence in aerial refueling-part A: flight data analysis, AIAA-2008-6696[R]. Reston: AIAA, 2008.

[45] Dogan A, Lewis T A, Blake W. Wake-vortex induced wind with turbulence in aerial refueling-part B: model and simulation validation, AIAA-2008-6697[R]. Reston: AIAA, 2008.

[46] Lewis T A. Flight data analysis and simulation of wind effects during aerial refueling. Arlington: The University of Texas at Arlington, 2008.

[47] Li D W, Wang H L. Wake vortex effect modeling and simulation in automated aerial refueling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 776-780. (in Chinese) 李大伟, 王宏伦. 自动空中加油阶段加油机尾涡流场建模与仿真[J]. 北京航空航天大学学报, 2010, 36(7): 776-780.

[48] Ro K, Basaran E. Aerodynamic investigations of paradrogue assembly in aerial refueling system, AIAA-2006-0855[R]. Reston: AIAA, 2006.

[49] Valasek J, Kimmett J, Hughes D, et al. Vision based sensor and navigation system for autonomous aerial refueling, AIAA-2002-3441[R]. Reston: AIAA, 2002.

[50] Kimmett J, Valasek J, Junkins J L. Vision based controller for autonomous aerial refueling[C]//Proceedings of the 2002 IEEE International Conference on Control Applications. Piscataway: IEEE, 2002: 1138-1143.

[51] Kimmett J, Valasek J, Junkins J L. Autonomous aerial refueling utilizing a vision based navigation system, AIAA-2002-4469[R]. Reston: AIAA, 2002.

[52] Tandale M D, Bowers R, Valasek J. Trajectory tracking controller for vision based probe and drogue autonomous aerial refueling[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4): 846-857.

[53] Fravolini M L, Ficola A, Campa G, et al. Modeling and control issues for autonomous aerial refueling for UAVs using a probe-drogue refueling system[J]. Aerospace Science and Technology, 2004, 8(7): 611-618.

[54] Stepanyan V, Lavretsky E, Hovakimyan N. Aerial refueling autopilot design methodology: application to F-16 aircraft model, AIAA-2004-5321[R]. Reston: AIAA, 2004.

[55] Wang J, Hovakimyan N, Cao C. Verifiable adaptive flight control: unmanned combat aerial vehicle and aerial refueling[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 75-87.

[56] Wang J, Hovakimyan N, Cao C. L1 adaptive augmentation of gain-scheduled controller for racetrack maneuver in aerial refueling, AIAA-2009-5739[R]. Reston: AIAA, 2009.

[57] Ross S M, Pachter M, Jacques D R, et al. Autonomous aerial refueling based on the tanker reference frame[C]//IEEE Aerospace Conference. Piscataway: IEEE, 2006: 1-22.

[58] Ochi Y, Kominami T. Flight control for automatic aerial refueling via PNG and LOS angle control, AIAA-2005-6268[R]. Reston: AIAA, 2005.

[59] Dogan A, Elliott C M, Riley F, et al. Effects of mass and size on control of large receiver in aerial refueling, AIAA-2009-5927[R]. Reston: AIAA, 2009.

[60] Pachter M, Houpis C H, Trosen D W. Design of an air-to-air automatic refueling flight control system using quantitative feedback theory[J]. International Journal of Robust and Nonlinear Control, 1997, 7(6): 561-580.

[61] Murillo O J, Lu P. Comparison of autonomous aerial refueling controllers using reduced order models, AIAA-2008-6790[R]. Reston: AIAA, 2008.

[62] Fravolini M L, Ficola A, Napolitano M R, et al. Development of modelling and control tools for aerial refueling for UAVs, AIAA-2003-5798[R]. Reston: AIAA, 2003.

[63] Elliott C M, Dogan A. Improving receiver station-keeping in aerial refueling by formulating tanker motion as disturbance, AIAA-2009-5602[R]. Reston: AIAA, 2009.

[64] Rehan M, Khan Z H. Robust formation control for aerial refueling[C]//International Conference on Robotics and Artificial Intelligence. Piscataway: IEEE, 2012: 11-18.

[65] Lee J H, Sevil H E, Dogan A, et al. Estimation of receiver aircraft states and wind vectors in aerial refueling, AIAA-2012-4533[R]. Reston: AIAA, 2012.

[66] Sun X, Zhang X G. The UAV autonomous aerial refueling controller based on predictor auto disturbances rejection method[J]. Applied Mechanics and Materials, 2013, 380-384: 347-352.

[67] Liu Z, Yuan S Z, Zhou C H. Flight control of receiver aircraft in probe and drogue aerial refueling[J]. Science Technology and Engineering, 2011, 11(8): 1755-1761. (in Chinese) 刘曌, 袁锁中, 周春华. 软管式自主空中加油受油机控制系统研究[J]. 科学技术与工程, 2011, 11(8): 1755-1761.

[68] Li D W, Wang H L. UAV flight control in automated aerial refueling[J]. Journal of System Simulation, 2010, 22(Suppl. 1): 126-130. (in Chinese) 李大伟, 王宏伦. 无人机自动空中加油飞行控制技术[J]. 系统仿真学报, 2010, 22(Suppl. 1): 126-130.

[69] Wang J, Patel V V, Cao C Y, et al. Novel L1 adaptive control methodology for aerial refueling with guaranteed transient performance[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(1): 182-193.

[70] Liu Z. Research on flight control technology of the receiver aircraft in probe-and-drogue autonomous aerial refueling. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese) 刘曌. 软式自主空中加油受油机飞行控制技术研究. 南京: 南京航空航天大学, 2012.

[71] Wang H L, Du Y, Gai W D. Precise docking control in unmanned aircraft vehicle automated aerial refueling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7): 822-826. (in Chinese) 王宏伦, 杜熠, 盖文东. 无人机自动空中加油精确对接控制[J]. 北京航空航天大学学报, 2011, 37(7): 822-826.

[72] Gai W D, Wang H L, Li D W. Trajectory tracking for automated aerial refueling based on adaptive dynamic inversion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5): 585-590. (in Chinese) 盖文东, 王宏伦, 李大伟. 基于自适应动态逆的自动空中加油轨迹跟踪[J]. 北京航空航天大学学报, 2012, 38(5): 585-590.

[73] Elliott C M, Dogan A. Investigating nonlinear control architecture options for aerial refueling, AIAA-2010-7927[R]. Reston: AIAA, 2010.

[74] Tucker J, Dogan A, Blake W. Derivation of the dynamics equations of receiver aircraft in aerial refueling[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 585-598.

[75] Kriel S C, Engelbrecht J A A, Jones T. Receptacle normal position control for automated aerial refueling[J]. Aerospace Science and Technology, 2013, 29(1): 296-304.

[76] Guo J, Dong X M, Liao K J, et al. Design of UAV autonomous controller for formation in aerial refueling[J]. Flight Dynamics, 2010, 28(6): 36-40. (in Chinese) 郭军, 董新民, 廖开俊, 等. 无人机空中加油自主编队控制器设计[J]. 飞行力学, 2010, 28(6): 36-40.

[77] DARPA’s AHR program moves closer to autonomous aerial refueling[EB/OL]. (2012-10-08)[2014-05-23]http:[C]//www.aviationtoday.com/av/topstories/DARPAs-AHR-Program-Moves-Closer-to-Autonomous-Aerial-Refueling_77462.html.

[78] Bullock S, Thomas P R, Bhandari U, et al. Collaborative control methods for automated air-to-air refueling, AIAA-2012-4767[R]. Reston: AIAA, 2012.

[79] Lyu M Q, Cheng C H, Zhang Z Z, et al. Application of airborne video test technologies during aerial refueling flight test[J]. Measurement & Control Technology, 2005, 24(10): 53-56. (in Chinese) 吕美茜, 程存虎, 张正中, 等. 机载视频测试技术在空中加油试飞中的应用[J]. 测控技术, 2005, 24(10): 53-56.

[80] Zhang Z Z, Wen X H. Video testing technology for flight test mission of in-flight refueling system on a certain fighter[J]. Geospatial Information, 2004, 2(6): 26-28. (in Chinese) 张正中, 文晓辉. 某飞机空中加油系统试飞的摄像测试技术[J]. 地理空间信息, 2004, 2(6): 26-28.

[81] North Atlantic Treaty Organization (NATO). ATP-56(B) Air-to-air refueling[S]. NATO, 2010.

[82] Le Maitre O P, Kino O M. Spectral methods for uncertainty quantification[M]. Berlin: Springer, 2010: 1-10.

[83] Lin H, Wang L. Iterative learning control theory[M]. Xi’an: Northwestern Polytechnical University Press, 1998: 24-61.(in Chinese) 林辉, 王林. 迭代学习控制理论[M]. 西安: 西北工业大学出版社, 1998: 24-56.

[84] Sun M X, Huang B J. Iterative learning control[M]. Beijing: National Defense Industry Press, 1999: 17-63.(in Chinese) 孙明轩, 黄宝健. 迭代学习控制[M]. 北京: 国防工业出版社, 1999: 17-63.

[85] Ding J, Sprinkle J, Tomlin C J, et al. Reachability calculations for vehicle safety during manned/unmanned vehicle interaction[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 138-152.

[86] A failed aerial refueling of a fighter[Z/OL]. (2008-03-19)[2013-10-23].http:[C]//v.youku.com/v_show/id_XMjE0Njk5ODA=.html. (in Chinese) 战斗机失败的空中加油[Z/OL]. (2008-03-19)[2013-10-23]. http:[C]//v.youku.com/v_show/id_XMjE0Njk5ODA=.html.

文章导航

/