制导精度一体化试验的Bayesian样本量计算方法
收稿日期: 2014-03-12
修回日期: 2014-04-12
网络出版日期: 2014-04-17
基金资助
国家自然科学基金(61021002,61304239)
Bayesian sample size determination for integrated test of missile hit accuracy
Received date: 2014-03-12
Revised date: 2014-04-12
Online published: 2014-04-17
Supported by
National Natural Science Foundation of China (61021002, 61304239)
针对制导精度一体化试验的样本量计算(SSD)问题,分析了应用经典样本量计算方法和标准幂先验的Bayesian样本量计算方法存在的问题和矛盾;为了解决验前样本量很大时,基于标准幂先验得到的设计先验与Bayesian平均后验方差准则之间的矛盾,综合考虑仿真可信度与验前样本量的影响,提出了试验的设计效应指标,给出一种基于试验的设计效应等价确定修正幂先验指数的方法,并用于构造Bayesian样本量计算的设计先验;以兴趣参数Bayesian估计的平均后验方差为输出精度,分别设计了在试验经费约束和评估精度要求约束下的一体化试验方案样本量优化计算方程,并通过示例分析证明了所提Bayesian样本量计算方法的有效性。
董光玲 , 姚郁 , 贺风华 , 赫赤 . 制导精度一体化试验的Bayesian样本量计算方法[J]. 航空学报, 2015 , 36(2) : 575 -584 . DOI: 10.7527/S1000-6893.2014.0051
Sample size determination (SSD) methods for integrated test of missile hit accuracy are analyzed, which reveals the problem and contradiction in classical method and Bayesian method using standard power prior for design. In order to solve the contradiction between standard power prior for design and average posterior variance criterion of Bayesian SSD while prior sample size is very large, design effect of experiment is proposed with a comprehensive consideration on simulation test credibility and prior sample size. Thus, a modified power exponent for design prior elicitation based on design effect equivalence of experiment is given. Taking Bayesian average posterior variance for parameter of interest as the output precision, we get the optimization equations for SSD of integrated test scheme under both test cost constraint and required posterior precision constraint. In the end, the effectiveness of our proposed Bayesian SSD method for integrated test of missile hit accuracy is illustrated with two examples.
[1] Kraft E M. Integrated test and evaluation: a knowledge-based approach to system development, AIAA-1995-3982[R]. Reston: AIAA, 1995.
[2] Waters D P. Integrating modeling and simulation with test and evaluation activities, AIAA-2004-6800[R]. Reston: AIAA, 2004.
[3] Claxton J D, Cavoli C, Johnson C. Test and evaluation management guide[M]. 6th ed. Fort Belvoir, VA: The Defense Acquisition University Press, 2012: 311.
[4] Adcock C J. Sample size determination: a review[J]. Journal of the Royal Statistical Society: Series D (The Statistician), 1997, 46(2): 261-283.
[5] Murphy K R, Myors B, Wolach A H. Statistical power analysis: a simple and general model for traditional and modern hypothesis tests[M]. 3rd ed. New York: Routledge, 2009: 224.
[6] Balci O. Verification, validation and accreditation of simulation models[C]//Proceedings of the 1997 Winter Simulation Conference. Piscataway, NJ: IEEE, 1997: 135-141.
[7] Rebba R, Mahadevan S, Huang S P. Validation and error estimation of computational models[J]. Reliability Engineering & System Safety, 2006, 91(10-11): 1390-1397.
[8] Balci O. Verification, validation, and testing of models[M]. New York: Springer, 2013: 1618-1627.
[9] De Santis F. Using historical data for Bayesian sample size determination[J]. Journal of the Royal Statistical Society: Series A (Statistics in Society), 2007, 170(1): 95-113.
[10] Ibrahim J G, Chen M H. Power prior distributions for regression models[J]. Statistical Science, 2000, 15(1): 46-60.
[11] Desu M M, Raghavarao D. Sample size methodology[M]. Boston, MA: Academic Press, 1990.
[12] Joseph L, Wolfson D B, Du Berger R. Sample size calculations for binomial proportions via highest posterior density intervals[J]. The Statistician, 1995, 44(2): 143-154.
[13] Joseph L, Belisle P. Bayesian sample size determination for normal means and differences between normal means[J]. Journal of the Royal Statistical Society: Series D (The Statistician), 1997, 46(2): 209-226.
[14] Di Bacco M, Amore G D, Scalfari F, et al. Two experimental settings in clinical trials: predictive criteria for choosing the sample size in interval estimation[M]. Norwell, MA: Springer, 2004: 109-130.
[15] Greenhouse J B, Waserman L. Robust Bayesian methods for monitoring clinical trials[J]. Statistics in Medicine, 1995, 14(12): 1379-1391.
[16] Fryback D G, Chinnis J O, Ulvila J W. Bayesian cost-effectiveness analysis[J]. International Journal of Technology Assessment in Health Care, 2001, 17(1): 83-97.
[17] Duan Y. A modified Bayesian power prior approach with applications in water quality evaluation[D]. Blacksburg, Virginia: Virginia Polytechnic Institute and State University, 2005.
[18] Spiegelhalter D J, Abrams K R, Myles J P. Bayesian approaches to clinical trials and health-care evaluation[M]. Chichester, West Sussex: John Wiley & Sons, 2004: 406.
[19] De Santis F. Power priors and their use in clinical trials[J]. The American Statistician, 2006, 60(2): 122-129.
[20] Muessig P R, Laack D R, Wrobleski J J. An integrated approach to evaluating simulation credibility, ADA405051[R]. California: Naval Air Warfare Center Weapons, 2001.
[21] Yang H Z, Kang F J, Yan J T. A methodology of simulation credibility evaluation based on AHP[J]. Journal of System Simulation, 2006, 18(s2): 52-54 (in Chinese). 杨惠珍, 康凤举, 阎晋屯. 一种基于AHP的仿真可信度评估方法研究[J]. 系统仿真学报, 2006, 18(s2): 52-54.
[22] Fang K, Ma P, Yang M. AHP ultra weight for simulation credibility evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(5): 584-588 (in Chinese). 方可, 马萍, 杨明. 仿真可信度评估中的AHP超越权重[J]. 北京航空航天大学学报, 2011, 37(5): 584-588.
[23] Jiao P. Research on the VV & A theory and method of missile guidance simulation system[D]. Changsha: National University of Defense Technology, 2010 (in Chinese). 焦鹏. 导弹制导仿真系统VV&A理论和方法研究[D]. 长沙: 国防科学技术大学, 2010.
[24] Bernardo J M, Smith A F M. Bayesian theory[M]. New York: John Wiley & Sons, 2000: 608.
/
〈 |
|
〉 |