电子与控制

X射线脉冲星信号时延的实时估计方法

  • 李鹏飞 ,
  • 徐国栋 ,
  • 董立珉 ,
  • 候天蕊
展开
  • 哈尔滨工业大学 卫星技术研究所, 黑龙江 哈尔滨 150001
徐国栋男,博士,研究员,博士生导师。主要研究方向:卫星综合电子系统,通信及导航技术。Tel:0451-86414117E-mail:xgdong_61@163.com;李鹏飞男,博士研究生。主要研究方向:航天器自主导航技术。Tel:0451-86414117E-mail:lpf_365@163.com

收稿日期: 2013-09-16

  修回日期: 2014-01-20

  网络出版日期: 2014-02-13

基金资助

国家“863”计划(2008AA8051602)

A Real Time Estimation Method of Time-delay for X-ray Pulsar Signal

  • LI Pengfei ,
  • XU Guodong ,
  • DONG Limin ,
  • HOU Tianrui
Expand
  • Research Center of Satellite Technology, Harbin Institute of Technology, Harbin 150001, China

Received date: 2013-09-16

  Revised date: 2014-01-20

  Online published: 2014-02-13

Supported by

National High-tech Research and Development Program of China (2008AA8051602)

摘要

针对在频域内计算X射线脉冲星信号延时量存在滞后性,进而难以为航天器自主导航提供实时信息的问题,提出将脉冲星信号延时估计转化为时域内标量估计的方法。首先,通过人工神经智能网络获得脉冲星信号的标准轮廓函数作为状态方程;应用粒子滤波算法对脉冲星信号延时量进行实时估计;其次,为了避免标准粒子滤波器中的粒子退化现象,推导并证明了一种新型粒子滤波算法;最后,推导出粒子滤波算法的精度函数,为航天器的导航策略提供参考。以航天器在轨运行中可能遇到的3种情况为背景,验证了所提粒子滤波算法的正确性与有效性。

本文引用格式

李鹏飞 , 徐国栋 , 董立珉 , 候天蕊 . X射线脉冲星信号时延的实时估计方法[J]. 航空学报, 2014 , 35(7) : 1966 -1976 . DOI: 10.7527/S1000-6893.2013.0526

Abstract

In order to make up for the defect of traditional treatment in the frequency domain, that can not provide enough new information to the autonomous spacecraft navigation system because of long time accumulation, a new kind of particle filter based on the normal particle filter is proposed for estimating the phase of a pulsar signal. Firstly, a mathematical model of the pulsar signal is obtained by artificial neural network, and the model is taken as the system state equation. Secondly, the new particle filter which is proposed in order to solve the sample impoverishment phenomenon is strictly proven. Finally, because of the special features of the system, the function which indicates the output value precision is derived, and it can provide a reference for spacecraft navigation strategy. Several simulation results all show that the filter can guarantee stability and high precision under the conditions which are set for the three cases that the spacecraft may encounter in real situations.

参考文献

[1] Downs G S. Interplanetary navigation using pulsating radio sources, NASA Technique Reports N74-34150[J]. Washington, D.C.: NASA, 1974.

[2] Sheikh S I. The use of variable celestial X-ray sources for spacecraft navigation. College Park: Department of Aerospace Engineering, University of Maryland, 2005.

[3] Hanson J E. Principle of X-ray navigation, SLAC-Report-809. Stanford: Stanford Linear Accelerator Center, Stanford University, 1996.

[4] Su Z, Xu L P, Wang G Y, et al. Pulsar weak signal periodicity detection based on discrete square ware transform[J]. Journal of Astronautics, 2009, 30(6): 2243-2248. (in Chinese) 苏哲, 许录平, 王光耀, 等. 基于离散方波变换的脉冲星微弱信号周期性检测[J]. 宇航学报, 2009, 30(6): 2243-2248.

[5] Jaske C E. Analysis of fatigue, fatigue-crack propagation and fracture data, NASA CR-132332. Washington, D.C.: NASA, 1973.

[6] Maron O, Kijak J, Kramer M, et al. Pulsar spectra of radio emission[J]. Astronomy and Astrophysics, 2000, 147: 195-203.

[7] Morii M, Ktamoto S, Shibazaki N, et al. Suzaku observation of the anomalous X-ray pulsar 1E 1841-045[J]. Publications of the Astronomical Society of Japan, 2010, 62(5): 1249-1259.

[8] Xie Q, Xu L P, Zhang H, et al. Modeling of X-ray pulsar cumulation profile and signal identification[J]. Acta Physica Sinica, 2012, 61(11): 119701. (in Chinese) 谢强, 许录平, 张华, 等. X射线脉冲星累积轮廓建模及信号辨识[J]. 物理学报, 2012, 61(11): 119701.

[9] Wang L, Xu L P, Zhang H, et al. Pulsar signal detection based on S-transform[J]. Acta Physica Sinica, 2013, 62(13): 139702. (in Chinese) 王璐, 许录平, 张华, 等. 基于S变换的脉冲星辐射脉冲信号检测[J].物理学报, 2013, 62(13): 139702.

[10] Samarasinghe S. Neural networks for applied sciences and engineering[M]. New York: Auerbach Publications, 2006: 99-102.

[11] Zhao F, Chai S L, Ye L F. Improved multi-objective particle swarm optimization algorithm for synthesizing conformal arrays with excitations restricted[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1944-1952. (in Chinese) 赵菲, 柴舜连, 叶良丰. 改进的多目标粒子群算法综合激励受限的共形阵[J]. 航空学报, 2013, 34(8): 1944-1952.

[12] Simon D. Optimal state estimation: Kalman, H, and nonlinear approaches[M]. Hoboken: John Wiley & Sons, Inc., 2006: 199-203.

[13] Sheikh S I, Pines D J, Ray P S, et al. The use of X-ray pulsars for spacecraft navigation[J]. Advances in the Astronautical Sciences, 2004, 119(1): 105-119.

[14] Sheikh S I, Pines D J. Recursive estimation of spacecraft position and velocity using X-ray pulsar time of arrival measurements[J]. Navigation: Journal of the Institute of Navigation, 2006, 53(3): 149-166.

[15] Sheikh S I, Pines D J, Ray P S, et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 49-63.

[16] Guo Z W, Miao L J, Zhao H S, et al. Application of am improved Gaussian-like sum particle filer to large misalignment transfer alignment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 164-172. (in Chinese) 郭子伟, 缪玲娟, 赵洪松, 等. 一种改进的类高斯和粒子滤波在大失准角传递对准中的应用[J]. 航空学报, 2013, 34(1): 164-172.

[17] Xia N, Qiu T S, Li J C, et al. A nonlinear filtering algorithm combining the Kalman filter and the particle filter[J]. Acta Electronica Sinica, 2013, 41(1): 148-152. (in Chinese) 夏楠, 邱天爽, 李景春, 等. 一种卡尔曼滤波与粒子滤波相组合的非线性滤波算法[J]. 电子学报, 2013, 41(1): 148-152.

[18] Munoz S, Lightseyy E G. A sensor driven trade study for autonomous navigation capabilities, AIAA-2011-6589. Reston: AIAA, 2011.

[19] Abidin H Z. On the construction of the ambiguity search space for on-the-fly[J]. Journal of the Institute of Navigation, 1993, 40(3): 321-338.

文章导航

/