流体力学与飞行力学

基于CFD/CSD耦合方法的新型桨尖旋翼气动弹性载荷计算

  • 王俊毅 ,
  • 招启军 ,
  • 肖宇
展开
  • 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 江苏 南京 210016
王俊毅 男,硕士研究生。主要研究方向:直升机旋翼空气动力学及气动弹性力学。Tel:025-84893753 E-mail:jywang@nuaa.edu.cn;招启军 男,博士,教授,博士生导师。主要研究方向:直升机空气动力学、 计算流体动力学、 旋翼气动外形设计、 主动流动控制、 气动噪声模拟与控制以及总体设计。Tel:025-84893753 E-mail:zhaoqijun@nuaa.edu.cn;肖宇 男,博士研究生。主要研究方向:直升机旋翼空气动力学及气动弹性力学。Tel:025-84893753 E-mail:xiaoyu@nuaa.edu.cn

收稿日期: 2013-11-06

  修回日期: 2014-01-13

  网络出版日期: 2014-01-22

基金资助

国家自然科学基金(11272150)

Calculations on Aeroelastic Loads of Rotor with Advanced Blade-tip Based on CFD/CSD Coupling Method

  • WANG Junyi ,
  • ZHAO Qijun ,
  • XIAO Yu
Expand
  • National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2013-11-06

  Revised date: 2014-01-13

  Online published: 2014-01-22

Supported by

National Natural Science Foundation of China (11272150)

摘要

为提高旋翼非定常气动弹性载荷的分析精度,在刚性旋翼计算流体力学(CFD)方法中引入计算结构动力学(CSD)方法,建立了一套适合于新型桨尖旋翼气动弹性载荷分析的CFD/CSD耦合方法。旋翼流场分析采用Navier-Stokes/Euler方程作为控制方程,围绕旋翼生成运动嵌套网格。在流场求解中,采用双时间法推进,通量计算采用Jameson中心格式,并采用B-L(Baldwin-Lomax)湍流模型。基于Hamilton变分原理和中等变形梁理论开展桨叶弹性运动变形分析,并发展了一套具有任意转角梁单元的新方法以提高新型桨尖旋翼的动力学分析精度。采用基于代数变换方法的网格变形策略,建立了一套CFD/CSD松耦合方法,桨叶运动变形和旋翼气动力信息通过流固交接面传递。首先分别对CSD和CFD模块进行了验证,然后计算了UH-60A旋翼在高速前飞状态下的气动弹性载荷,并与试验值进行了对比,最后重点对旋翼桨尖形状进行了参数分析。计算结果表明,相比于升力线理论和刚性旋翼CFD方法,CFD/CSD耦合方法可以显著提高旋翼非定常气动弹性载荷的分析精度,并能更准确地反映新型桨尖旋翼的气动弹性耦合效应;同时采用后掠桨尖在桨叶前行侧30°~90°方位角范围可以显著降低激波强度,有利于改善旋翼的气动特性。

本文引用格式

王俊毅 , 招启军 , 肖宇 . 基于CFD/CSD耦合方法的新型桨尖旋翼气动弹性载荷计算[J]. 航空学报, 2014 , 35(9) : 2426 -2437 . DOI: 10.7527/S1000-6893.2013.0519

Abstract

Computational structural dynamics (CSD) is introduced into rigid rotor computational fluid dynamics (CFD) to enhance the accuracy of the unsteady aeroelastic load analysis of a rotor, and a CFD/CSD coupling method suitable for the aeroelastic analysis of a rotor with an advanced blade-tip is developed. The Navier-Stokes/Euler equations are adopted as the governing equations, and moving-embedded grids are generated around the rotor in forward flight. In the flowfield analysis, a dual time-stepping algorithm is employed in temporal discretization, while Jameson's central scheme is adopted in spatial discretization and a B-L(Baldwin-Lomax) turbulence model is included. The blade motion analysis is conducted based on Hamilton's variational principle and moderate deflection beam theory, and a new beam element method with an arbitrary junction angle is established to improve the accuracy of dynamics analysis on the rotor with an advanced blade-tip. The blade grid is deformed using algebraic transformation strategy, and a CFD/CSD loose coupling method is developed with blade motions and rotor airloads being transferred through the fluid-structure interface. The CSD and CFD modules are validated respectively, and the aeroelastic loads on a UH-60A rotor in high speed forward flight condition are calculated and compared with test data. Then, parametric investigations are carried out with emphasis on blade-tip shapes. The calculated results indicate that the present CFD/CSD method is able to improve the prediction accuracy of unsteady aeroelastic loads on the rotor as compared with the lifting-line method and rigid rotor CFD method, and the aeroelastic coupling effect of the rotor with the advanced blade-tip can be analyzed more precisely. Meanwhile, it is shown that a swept blade-tip shape can reduce the strength of shock at the advancing side between 30° and 90° azimuth angles, resulting in improved aerodynamic characteristics of the rotor.

参考文献

[1] Conlisk A T. Modern helicopter rotor aerodynamics[J]. Progress in Aerospace Science, 2001, 37(5): 419-476.

[2] Datta A, Chopra I. Prediction of the UH-60A main rotor structural loads using computational fluid dynamics/comprehensive analysis coupling[J]. Journal of the American Helicopter Society, 2008, 53(4): 351-365.

[3] Wang S C, Xu G H. Progress of helicopter rotor aerodynamics[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2001, 33(3): 203-211. (in Chinese) 王适存, 徐国华. 直升机旋翼空气动力学的发展[J]. 南京航空航天大学学报, 2001, 33(3): 203-211.

[4] Brocklehurst A, Barakos G N. A review of helicopter rotor blade tip shapes[J]. Progress in Aerospace Sciences, 2013, 56: 35-74.

[5] Tung C, Caradonna F X, Johnson W. The prediction of transonic flows on an advancing rotor[J]. Journal of the American Helicopter Society, 1986, 32(7): 4-9.

[6] Potsdam M, Yeo H, Johnson W. Rotor airloads prediction using loose aerodynamic/structural coupling[J]. Journal of Aircraft, 2006, 43(5): 732-742.

[7] Ahmad J U, Chaderjian N M. High-order accurate CFD/CSD simulation of the UH-60 rotor in forward flight, AIAA-2011-3186[R]. Reston: AIAA, 2011.

[8] Wang H. Numerical simulation for the flowfield of new-tip rotors with effect of blade elasticity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese) 王海. 计入桨叶结构弹性的新型桨尖旋翼流场数值模拟研究[D]. 南京: 南京航空航天大学, 2010.

[9] Xiao Y, Xu G H, Shi Y J. Analysis of rotor airloads based on CFD/CA loose coupling[C]//Proceedings of the 2nd Annual Forum of the Asian/Australian Rotorcraft Forum and the 4th International Basic Research Conference on Rotorcraft Technology, 2013: 429-438.

[10] Datta A, Sitaraman J, Chopra I, et al. CFD/CSD prediction of rotor vibratory loads in high-speed flight[J]. Journal of Aircraft, 2006, 43(6): 1698-1709.

[11] Bousman W G. Aerodynamic characteristics of SC1095 and SC1094R8 airfoils, NASA TP-2003-212265[R].Washington, D. C.: NASA, 2003.

[12] Wang B, Zhao Q J, Xu G, et al. A new moving-embedded grid method for numerical simulation of unsteady flowfield of the helicopter rotor in forward flight[J]. Acta Aerodynamica Sinica, 2012, 30(1): 14-21. (in Chinese) 王博, 招启军, 徐广, 等. 一种适合于旋翼前飞非定常流场计算的新型运动嵌套网格方法[J]. 空气动力学学报, 2012, 30(1): 14-21.

[13] Meakin R L. A new method for establishing intergrid communication among systems of overs grids, AIAA-1991-1586[R]. Reston: AIAA, 1991.

[14] Xu G, Zhao Q J, Wang B, et al. Prediction on aerodynamic performance of advanced helicopter rotor in hover[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1723-1732. (in Chinese) 徐广, 招启军, 王博, 等. 先进直升机旋翼悬停状态气动性能计算[J]. 航空学报, 2010, 31(9): 1723-1732.

[15] Yuan K, Friedmann P. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips, NASA CR-4665[R]. Washington, D. C.: NASA, 1995.

[16] Panda B. Assembly of moderate-rotation finite elements used in helicopter rotor dynamics[J]. Journal of the American Helicopter Society, 1987, 32(4): 63-69.

[17] Xie L, Xu M, An X M, et al. Research of mesh deforming method based on radial basis function and nonlinear aeroelastic simulation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1501-1511. (in Chinese) 谢亮, 徐敏, 安效民, 等. 基于径向基函数的网格变形及非线性气动弹性时域仿真研究[J]. 航空学报, 2013, 34(7): 1501-1511.

[18] Xu M, An X M, Chen S L. CFD/CSD coupling numerical computational methodology[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(1): 33-37. (in Chinese) 徐敏, 安效民, 陈士橹. 一种CFD/CSD耦合计算方法[J]. 航空学报, 2006, 27(1): 33-37.

[19] Hopkins A S, Ormiston R A. An examination of selected problems in rotor blade structural mechanics and dynamics[C]//Proceedings of the 59th Annual Forum of the American Helicopter Society, 2003: 104-119.

[20] Davis S J. Predesign study for a modern 4-bladed rotor for the RSRA, NASA CR-166155[R]. Washington, D. C.: NASA, 1981.

[21] Hamade K S, Kufeld R M. Modal analysis of UH-60A instrumented rotor blades, NASA TM-4239[R]. Washington, D. C.: NASA, 1990.

[22] Pomin H, Wagner S. Navier-Stokes analysis of helicopter rotor aerodynamics in hover and forward flight[J]. Journal of Aircraft, 2002, 39(5): 813-821.

[23] Zhao Q J, Xu G H. Effects of swept blade tip on flowfield and aerodynamic characteristics of rotor[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(5): 706-712. (in Chinese) 招启军, 徐国华. 桨尖后掠对旋翼流场和气动特性的影响[J]. 南京航空航天大学学报, 2012, 44(5): 706-712.

文章导航

/