材料工程与机械制造

铝合金薄板零件橡皮囊成形屈曲分析与实验

  • 涂集林 ,
  • 王永军 ,
  • 张纪春 ,
  • 吴建军 ,
  • 魏生民
展开
  • 西北工业大学 陕西省数字化制造工程技术研究中心, 陕西 西安 710072
涂集林男,博士研究生。主要研究方向:薄板成形,金属塑性成形。E-mail:tttjlin@mail.nwpu.edu.cn;王永军男,博士,副教授,硕士生导师。主要研究方向:金属塑性成形,复合材料成形。Tel:029-88493717,E-mail:wyongjun@nwpu.edu.cn;张纪春男,硕士研究生。主要研究方向:金属塑性成形,钛合金成形。E-mail:sishaoyezhang@163.com;吴建军男,博士,教授,博士生导师。主要研究方向:材料成形的数字化分析与模拟,工装结构分析与优化,复材预成形与制造。E-mail:wujj@nwpu.edu.cn;魏生民男,博士,教授,博士生导师。主要研究方向:现代集成制造技术,科学计算可视化及虚拟现实技术。E-mail:weism@nwpu.edu.cn

收稿日期: 2013-09-10

  修回日期: 2013-10-17

  网络出版日期: 2013-10-21

基金资助

国家自然科学基金(51075332)

Analysis and Experiment on Buckling of Rubber Bladder Forming of Thin Aluminum Alloy Plate Parts

  • TU Jilin ,
  • WANG Yongjun ,
  • ZHANG Jichun ,
  • WU Jianjun ,
  • WEI Shengmin
Expand
  • Shaanxi Province Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-09-10

  Revised date: 2013-10-17

  Online published: 2013-10-21

Supported by

National Natural Science Foundation of China (51075332)

摘要

为了抑制铝合金薄板类零件在橡皮囊成形后出现屈曲的缺陷,采用薄板屈曲微分方程对零件成形后的屈曲进行理论分析,并通过橡皮囊成形实验研究自然时效时间和成形压力对屈曲缺陷的影响。理论分析结果表明:零件法兰屈曲波数与其内外径比有关,通过改变法兰宽度进行实验验证,实验结果与理论分析结果相符;而成形实验结果表明,屈曲缺陷高度随板料自然时效时间的增加而增加,随成形压力的增加而减少。因此,理论分析结果有效,并且可通过减少淬火后成形时间和增加成形压力来抑制屈曲缺陷。

本文引用格式

涂集林 , 王永军 , 张纪春 , 吴建军 , 魏生民 . 铝合金薄板零件橡皮囊成形屈曲分析与实验[J]. 航空学报, 2014 , 35(8) : 2341 -2347 . DOI: 10.7527/S1000-6893.2013.0438

Abstract

In order to restrain the buckling defects of the thin aluminum alloy plate parts after the process of rubber bladder forming, the buckling process is theoretically analyzed using thin plate buckling differential equations, and the effects of natural aging time and forming pressure on buckling defects are studied through the rubber bladder forming experiment. The results show that the flange buckling wave number has the relationship with the diameter ratio, and the forming experiment results with different flange widths show that the flange wave number agrees with the theoretical calculated results, the buckling defect height increases with the increase of the natural aging time, and decreases with the increase of the forming pressure. Therefore, the results of the theoretical analysis is valid, and the buckling defects can be restrained by reducing forming time after quenching and increasing forming pressure.

参考文献

[1] Zhu M H, Wang W B, Bao Y D, et al. Research on precise blank prediction method of aircraft part of rubber bladder forming[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 670-676. (in Chinese) 朱明华, 王文斌, 鲍益东, 等. 飞机橡皮囊成形零件毛坯精确预示方法研究[J]. 航空学报, 2013, 34(3): 670-676.
[2] Sala G. A numerical and experimental approach to optimise sheet stamping technologies: part II - aluminium alloys rubber-forming[J]. Materials & Design, 2001, 22(4): 299-315.
[3] Dirikolu M H, Akdemir E. Computer aided modelling of flexible forming process[J]. Journal of Materials Processing Technology, 2004, 148(3): 376-381.
[4] Hatipoglu H A, Polat N, Koksal A, et al. Modeling flexforming (fluid cell forming) process with finite element method[J]. Key Engineering Materials, 2007, 344: 469-476.
[5] Chen L, Qiu X, Li S L, et al. Analysis and experiment study on springback of straight flanging in rubber fluid forming[J]. Journal of Plasticity Engineering, 2008, 15(3): 47-50. (in Chinese) 陈磊, 邱晞, 李善良, 等. 橡皮液压成形直弯边回弹试验与分析研究[J]. 塑性工程学报, 2008, 15(3): 47-50.
[6] Wu N, Han Z R, Zhan Q X, et al. Springback analysis study of shrink flanging in rubber fluid forming[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2009, 26(5): 7-10. (in Chinese) 吴娜, 韩志仁, 詹庆西, 等. 凸弯边零件液压橡皮成形回弹数值模拟分析[J]. 沈阳航空工业学院学报, 2009, 26(5): 7-10.
[7] Xu Z W. The FEM simulation of rubber forming[J]. Machine Building & Automation, 2006, 35(3): 78-81. (in Chinese) 徐作文. 橡皮成形的有限元模拟[J]. 机械制造与自动化, 2006, 35(3): 78-81.
[8] Yu T X, Zhang L C. The elastic wrinkling of an annular plate under uniform tension on its inner edge[J]. International Journal of Mechanical Sciences, 1986, 28(11): 729-737.
[9] Coman C D, Haughton D M. Localized wrinkling instabilities in radially stretched annular thin films[J]. Acta Mechanica, 2006, 185(3-4): 179-200.
[10] Coman C D, Haughton D M. On some approximate methods for the tensile instabilities of thin annular plates[J]. Journal of Engineering Mathematics, 2006, 56(1): 79-99.
[11] Wang X, Cao J. An analytical prediction of flange wrinkling in sheet metal forming[J]. Journal of Manufacturing Processes, 2000, 2(2): 100-107.
[12] Zhang F Q, Tao Y R, Huang C Q, et al. Wrinkling analysis of flange in the process of sheet drawing[J]. Forging & Stamping Technology, 2004, 29(2): 18-20. (in Chinese) 张福全, 陶友瑞, 黄长清, 等. 薄板拉深中法兰区的屈曲分析[J]. 锻压技术, 2004, 29(2): 18-20.
[13] Fan M H, Zhou X B. Analysis of induced compressive stress in diagonal tensile test of square specimen[J]. Journal of Beijing University of Aeronautics and Astronautics, 1992, 18(4): 127-132. (in Chinese) 范淼海, 周贤宾. 方板对角拉伸诱导压应力的分析[J]. 北京航空航天大学学报, 1992, 18(4): 127-132.
[14] Wan M, Wang J, Xu W L. Wrinkle behavior of automobile thin sheet metals by modified Yoshida buckling test [J]. Materials Science and Technology, 2004, 12(4): 442-445. (in Chinese) 万敏, 王菁, 徐伟力. 汽车薄钢板不均匀拉伸皱曲行为研究[J]. 材料科学与工艺, 2004, 12(4): 442-445.
[15] Yang W J, Li D S, Li X Q. Simplified numerical analysis model of rubber forming process for aluminum alloy sheet [J]. China Mechanical Engineering, 2009, 20(19): 2382-2386. (in Chinese) 杨伟俊, 李东升, 李小强. 铝合金板橡皮成形简化数值分析模型研究[J]. 中国机械工程, 2009, 20(19): 2382-2386.
[16] Gao H Z, Zhou X B. Formability and numerical simulation for as-quenched aluminum alloy sheet[J]. Journal of Aeronautical Materials, 2008, 28(5): 27-31. (in Chinese) 高宏志, 周贤宾. 新淬火状态硬铝合金板的成形性能及数值模拟[J]. 航空材料学报, 2008, 28(5): 27-31.
文章导航

/