固体力学与飞行器总体设计

航空装备现场数据可靠性评估方法有效性分析

  • 沈安慰 ,
  • 郭基联 ,
  • 王卓健
展开
  • 空军工程大学 航空航天工程学院, 陕西 西安 710038
沈安慰男,博士研究生。主要研究方向:航空装备RMS论证与评估。Tel:029-84787505-201E-mail:zjsaw@sina.cn;郭基联男,博士,副教授,硕士生导师。主要研究方向:航空装备全寿命周期费用分析,航空装备可靠性、经济性论证与评估。Tel:029-84787505-201E-mail:guojilian@aliyun.com、王卓健男,博士,副教授。主要研究方向:飞行器总体设计与综合论证,RMS评估与验证。Tel:029-84787505-201E-mail:zhuojianw1974@sina.com

收稿日期: 2013-07-23

  修回日期: 2013-08-26

  网络出版日期: 2013-08-27

基金资助

国家自然科学基金(51201182);陕西省软科学技术基金(2011KRM122)

Validity Analysis of Reliability Evaluation Method in Aviation Equipment Field Data

  • SHEN Anwei ,
  • GUO Jilian ,
  • WANG Zhuojian
Expand
  • Aeronautics Engineering College, Air Force Engineering University, Xi'an 710038, China

Received date: 2013-07-23

  Revised date: 2013-08-26

  Online published: 2013-08-27

Supported by

National Natural Science Foundation of China (51201182); Soft Science Technology Foundation of Shannxi (2011KRM122)

摘要

针对航空高可靠性产品现场故障数据样本量小和经常出现数据删失的问题,分析了平均秩次法与期望-极大值(EM)算法的有效性,给出了这两种方法的适用范围。应用蒙特卡罗仿真方法,在考虑维修的情况下,设计了一种评定可靠性评估方法有效性的仿真方法。该方法以威布尔分布为例,通过飞行年、飞机架数、日利用率的动态变化来模拟产生具有随机删失特点的航空装备现场故障数据,以此来动态驱动样本量和删失比的变化,并分别评估这两种可靠性评估方法的有效性。仿真结果表明,在样本量为10~30时的小样本随机删失数据参数估计中,EM算法应该被优先采用。

本文引用格式

沈安慰 , 郭基联 , 王卓健 . 航空装备现场数据可靠性评估方法有效性分析[J]. 航空学报, 2014 , 35(5) : 1311 -1318 . DOI: 10.7527/S1000-6893.2013.0373

Abstract

Application scope and validity of mean rank order method and expectation maximun (EM) algorithm are analyzed for the problem of high reliability aviation product of small sample sizes and random censoring. Considering the case of maintenance, a reliability assessment simulation method is designed based on the Monte Carlo method. Random censoring observations of aviation equipment are simulated through the dynamic changes of flight years, aircraft numbers, and daily utilization rate with the example of Weilbull distribution. Thus the validity of mean rank order method and EM algorithm are assessed through the changes of sample size and censoring rate. The simulation results show that EM algorithm should be preferred in parameter estimation of small sample and random censoring when the sample size is in the range of 10 to 30.

参考文献

[1] Zhang L F, Xie M, Tang L C. A study of two estimation approaches for parameters of two-parameter Weibull distribution based on WPP//Proceedings of the 4th International Conference on Quality and Reliability, 2005: 377-384.

[2] Wang Z T, Gou J Y. Simulation analysis of field data estimators for 2-parameter Weibull distribution//Proceedings of the 4th International Conference on Reliability Maintainability and Safety, 1999: 391-396.

[3] Gebizlioglua O L, Senolua B, Kantar Y M. Comparison of certain value-at-risk estimation methods for the two-parameter Weibull loss distribution[J]. Journal of Computational and Applied Mathematics, 2011, 235(11): 3304-3314.

[4] Luceo A. Maximum likelihood vs. maximum goodness of fit estimation of the three-parameter Weibull distribution[J]. Journal of Statistical Computation & Simulation, 2008, 78(10): 941-949.

[5] Gibborns D I, Vane L C. A simulation study of estimators for the 2-parameter Weibull distribution[J]. IEEE Transactions on Reliability, 1981, 30(1): 61-66.

[6] Wang Z T, He L. Simulation analysis of reliability random tail-cutting data processing method with two-parameters Weibull distribution[J]. Electronic Product Reliability and Test Environment, 1998,16(5): 8-15. (in Chinese) 王自涛, 何玲. 二参数威布尔分布情况下可靠性随机截尾数据处理方法的仿真分析[J]. 电子产品可靠性与试验环境, 1998, 16(5): 8-15.

[7] Wen C J, Zhong Y N, Liu W C. Reliability analysis techniques of field data[J]. Journal of Hubei Polytechnic University, 2002, 17(4): 31-33. (in Chinese) 文昌俊, 钟毓宁, 刘文超.现场数据可靠性分析非参数方法比较[J]. 湖北工学院学报, 2002, 17(4): 31-33.

[8] Ke R. Review of domestic research on censored data[J]. Statistics & Information Forum, 2008, 23(10): 77-79. (in Chinese) 柯蓉. 国内删失数据统计研究状况综述[J]. 统计与信息论坛, 2008, 23(10): 77-79.

[9] Li J G, Fu Z G, Liu Y J. Test technology of high reliability aviation product[M]. Beijing: National Defense Industry Press, 2011: 1-5. (in Chinese) 李金国, 傅志国, 刘永坚. 高可靠性航空产品试验技术[M]. 北京: 国防工业出版社, 2011: 1-5.

[10] Shen K F, Shen Y J, Leu L Y. Design of optimal step-tress accelerated life tests under progressive type I censoring with random removals[J]. Quality and Quantity, 2011, 45(3): 587-597.

[11] Andres Christen J, Ruggeri F, Villa E. Utility based maintenance analysis using a random sign censoring model[J]. Reliability Engineering and System Safety, 2011, 96(3): 425-431.

[12] Zhao Y. Data analysis of reliability[M]. Beijing: National Defense Industry Press, 2011: 20-22. (in Chinese) 赵宇. 可靠性数据分析[M]. 北京: 国防工业出版社, 2011: 20-22.

[13] Dempster A P, Laird N M, Rudin D B.Maximum likelihood from incomplete data via the EM algorithm [J].Journal of the Royal Statistical Society: Series B, 1977, 39(1): 1-38

[14] Wang Z J, Shen A W, Guo J L. Analysis of validity with mean rank order method based on air fleet simulation model[J]. Systems Engineering and Electronics, 2013, 35(5): 1128-1132. (in Chinese) 王卓健, 沈安慰, 郭基联. 基于机群仿真模型的平均秩次法有效性分析[J]. 系统工程与电子技术, 2013, 35(5):1128-1132.

[15] Wu Y G, Zhou J, Wang Z, et al. Parameter estimation of Weibull distribution using the EM algorithm based on randomly censored data[J]. Journal of Sichuan University: Natural Science Edition, 2005, 42(5): 910-913. (in Chinese) 吴耀国, 周杰, 王柱, 等. 随机删失数据下基于 EM算法的Weibull分布参数估计[J]. 四川大学学报:自然科学版, 2005, 42(5): 910-913.

[16] Lai S J, Jin X X, Peng W. Research on the method to reject abnormal data in signal preprocessing[J]. Journal of Jiamusi University: Natural Science Edition, 2011, 29(3): 333-336. (in Chinese) 赖素建, 靳晓雄, 彭为. 信号预处理中错点剔除方法的研究[J]. 佳木斯大学学报: 自然科学版, 2011, 29(3): 333-336.

文章导航

/