材料工程与机械制造

二次法激光加工小孔技术

  • 张晓兵 ,
  • 孙瑞峰
展开
  • 北京航空制造工程研究所 高能束流加工技术重点实验室, 北京 100024
张晓兵 男,本科,研究员。主要研究方向:激光加工技术。Tel:010-85701580-601 E-mail:zxbxb@vip.sina.com;孙瑞峰 男,博士研究生。主要研究方向:激光加工技术。Tel:010-85701580-601 E-mail:srf_1984@sina.com

收稿日期: 2013-05-30

  修回日期: 2013-08-15

  网络出版日期: 2013-08-21

Sequential Laser Drilling Technology

  • ZHANG Xiaobing ,
  • SUN Ruifeng
Expand
  • Science and Technology on Power Beam Processes Laboratory, Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China

Received date: 2013-05-30

  Revised date: 2013-08-15

  Online published: 2013-08-21

摘要

为了提高激光加工航空发动机气膜冷却孔质量,介绍了一种采用焦耳级脉冲能量毫秒激光在镍基高温合金上快速加工初始通孔,再采用毫焦耳级脉冲能量纳秒激光扩孔的二次加工小孔方法。通过该方法试图消除毫秒激光加工小孔产生的再铸层以及解决纳秒激光直接加工几乎无再铸层小孔效率低、深度有限的问题,从而实现更高效率加工高质量气膜冷却孔。试验研究结果表明,该方法可以有效去除毫秒激光加工小孔孔壁的再铸层,改善孔壁表面质量,与纳秒激光直接加工小孔比较,在加工1 mm左右深的小孔时可以提高加工效率,但加工2 mm以上深度的小孔时,对提高加工效率的作用不明显。基于试验结果及分析,对二次法加工小孔提出了改进措施。

本文引用格式

张晓兵 , 孙瑞峰 . 二次法激光加工小孔技术[J]. 航空学报, 2014 , 35(3) : 894 -901 . DOI: 10.7527/S1000-6893.2013.0362

Abstract

This paper reports a new processing method that makes a hole rapidly with millisecond pulse laser in scale of joule pulse energy in nickel-based alloy at first, and enlarges the original hole with nanosecond pulse laser in scale of mJ pulse energy secondly for making higher quality cooling holes in aero-engine. In this way we attempt to eliminate the recast of holes made by millisecond pulse laser and resolve the problems of long processing time and limited processing depth caused by nanosecond pulse laser directly making holes with negligible recast,so making high quality holes with higher processing efficiency could be realized. The experimental results show that this method could remove the recast around the holes made by millisecond pulse laser effectively and improve the hole's inner surface quality; compared with nanosecond pulse laser making holes directly, it is effective in increasing the processing efficiency for holes of around 1 mm depth, but no apparent effect in shortening processing time in making holes of above 2 mm depth. Based on the research results and analysis, a few ideas for improving this kind of processing technique are proposed.

参考文献

[1] Corcoran A, Sexton L, Seaman B, et al. The laser drilling of multi-layer Rene80 and X40 material systems[C]//Section B-ICALEO. Florida: Laser Institute of America, 2000: 163-172.

[2] Rong L R. Laser drilling technology for micro-hole and its application in aviation and aerospace[J]. Aviation Precision Manufacturing Technology, 2009, 45(6): 30-33. (in Chinese) 荣烈润. 激光微细孔加工技术及其在航空航天领域中的应用[J]. 航空精密制造技术, 2009, 45(6): 30-33.

[3] Chen X L, Liu X B. Short pulsed laser machining: How short is short enough[J]. Journal of Laser Applications, 1999, 11(6): 268-272.

[4] Bandyopadhyay S, Sarin Sundar J K, Sundararaian G, et al. Geometrical features and metallurgical characteristics of Nd:YAG laser drilling holes in thick IN718 and Ti-6Al-4V sheets[J]. Journal of Materials Processing Technology, 2002, 127(1): 83-95.

[5] Zhu Q Y. Laser precise processing[M]. Beijing: China Machine Press, 1990: 207-211. (in Chinese) 朱企业. 激光精密加工[M]. 北京: 机械工业出版社, 1990: 207-211.

[6] Guo W Y, Wang M C, Zhang X B. Recast layer former by laser drilling in Ni-based alloys and progress on its control [J]. Laser Journal, 2003, 24(4): 1-3. (in Chinese) 郭文渊, 王茂才, 张晓兵. 镍基超合金激光打孔再铸层及其控制研究进展[J]. 激光杂志,2003, 24(4): 1-3.

[7] Li Z Y, Yu W C, Wang L. The affect for fatigue life of directional solidified alloy of DZ22 by recast structure formed by laser[J]. Journal of Material Engineering, 1994(8): 31-32. (in Chinese) 李志友, 于维成, 王理. 激光表面再铸层结构对DZ22定向凝固合金疲劳性能的影响[J]. 材料工程, 1994(8): 31-32.

[8] Pandey N D, Mohandas T, Shan H S. Cooling ability based integrated quality of laser-drilled holes[J]. Defense Science Journal, 2006, 56(1): 93-101.

[9] Li Q, Zheng Y J, Wang Z Y, et al. A novel high-peak power double AO Q-switches pulse Nd:YAG laser for drilling[J]. Optics & Laser Technology, 2005, 37(5): 357-362.

[10] Li L, Diver C, Atkinson J, et al. Sequential laser and EDM micro-drilling for next generation fuel injection nozzle manufacture[J]. CIRP Annals-Manufacturing Technology, 2006, 55(1): 179-182.

[11] Hu B, Hu L M. Numerical model of thermal cycle in arc welding of steel plate and sheet[J]. Journal of Shaanxi University of Technology: Natural Science Edition, 2008, 24(1): 5-8. (in Chinese) 胡波, 胡礼木. 中厚、薄板快速电弧焊热循环数学模型[J]. 陕西理工学院学报: 自然科学版, 2008, 24(1): 5-8.

[12] Booth H J. Recent applications of pulsed lasers in advanced materials processing[J]. Thin Solid Films, 2004, 453(1): 450-457.

[13] Phipps C. Laser applications overview: the state of the art and the future trend in the United State[J]. Riken Review, 2003, 50: 11-19.

[14] Robb H, Richard B. Laser drilling assists gas turbine cooling[J]. Industrial Laser Solutions China, 2011(50): 22-24.(in Chinese) Robb H, Richard B. 激光钻孔辅助燃气涡轮机冷运行[J]. 工业激光解决方案(中国版), 2011(50): 22-24.

[15] Dausinger F. Drilling of high quality micro holes[C]//Section B-ICALEO. Florida: Laser Institute of America, 2000: 1-10.

文章导航

/