流体力学与飞行力学

基于改进D-S证据理论的航空发动机转子故障决策融合诊断研究

  • 胡金海 ,
  • 余治国 ,
  • 翟旭升 ,
  • 彭靖波 ,
  • 任立通
展开
  • 1. 空军工程大学 航空航天工程学院, 陕西 西安 710038;
    2. 解放军驻四三零厂军事代表室, 陕西 西安 710021;
    3. 空军第一航空学院, 河南 信阳 464000
胡金海 男,博士,副教授。主要研究方向:航空发动机健康监控、故障诊断与综合控制。Tel:029-84787506 E-mail:lh_hjh_78@163.com

收稿日期: 2013-04-27

  修回日期: 2013-06-23

  网络出版日期: 2013-07-15

基金资助

国家自然科学基金(51105374)

Research of Decision Fusion Diagnosis of Aero-engine Rotor Fault Based on Improved D-S Theory

  • HU Jinhai ,
  • YU Zhiguo ,
  • ZHAI Xusheng ,
  • PENG Jingbo ,
  • REN Litong
Expand
  • 1. Aeronautics and Astronautics Engineering Institute, Air Force Engineering University, Xi'an 710038, China;
    2. Military Representative Office of PLA in Factory No. 430, Xi'an 710021, China;
    3. The First Aeronautical College of Air Force, Xinyang 464000, China

Received date: 2013-04-27

  Revised date: 2013-06-23

  Online published: 2013-07-15

Supported by

National Natural Science Foundation of China (51105374)

摘要

针对单一传感器的测量信息难以准确、全面地反映航空发动机转子、轴承和齿轮的工作状况,进而造成振动故障诊断难度大的问题,提出安装多个振动传感器组成传感器网络,建立基于多传感器信息的发动机转子故障决策融合诊断系统。由于多传感器系统不可避免地会存在各传感器信息不一致、信息冲突的情形,因此针对该融合诊断系统的信号测量、信息预处理、特征提取、故障诊断及决策融合5个环节,重点研究了决策融合环节的Dempster-Shafer(D-S)证据决策融合方法存在的冲突证据融合失效问题。通过分析原因,从避免“一票否决”现象和证据加权平均两个方面进行改进,提出了改进D-S证据融合方法,并应用于航空发动机转子的模拟故障决策融合诊断中。结果表明基于D-S证据理论对3个传感器的单一诊断结果进行决策融合,能得到比任一单个传感器更准确、可靠的结果;而改进D-S证据融合方法由于能在一定程度上克服冲突证据融合带来的失效问题,且能同时兼顾处理好非冲突证据的融合,故其对于证据冲突和非冲突情形都取得了较好的融合效果,因此总的分类正确率要高于常规D-S算法和PCR5算法。

本文引用格式

胡金海 , 余治国 , 翟旭升 , 彭靖波 , 任立通 . 基于改进D-S证据理论的航空发动机转子故障决策融合诊断研究[J]. 航空学报, 2014 , 35(2) : 436 -443 . DOI: 10.7527/S1000-6893.2013.0313

Abstract

As the information measured by a single sensor can not reflect the working status of aero-engine rotors, bearings and gears accurately and completely, it is difficult to make vibration fault diagnosis based on it. In an attempt to solve this problem, several sensors are used to establish a sensor network. Thus, an aero-engine rotor decision fusion diagnosis based on multi-sensor information is proposed in this paper. However, information inconformity and conflict of different sensors is inevitable in a multi-sensor system, which is composed of five segments: signal measurement, signal pretreatment, feature extraction, fault diagnosis and decision fusion. A focused study is conducted on conflict evidence fusion failing of the Dempster-Shafer (D-S) evidence decision fusion method in the decision fusion segment. Through a cause analysis, improvement is proposed to avoid the "one ticket veto" phenomenon and ameliorate the weighted average evidence process. Based on the improvement, an improved D-S evidence fusion method is put forward, which is applied to the decision fusion diagnosis of a simulated aero-engine rotor vibration fault. The result shows that, when the diagnosis result of all sensors is conducted to realize decision fusion using the D-S evidence theory, the fusion result is more accurate and reliable than any single sensor result. The improved D-S evidence fusion method can overcome the failing brought by conflict evidence fusion. Consequently, a better fusion result can be achieved in both the evidence conflict and non-conflict situation. And holistic classification accuracy is higher than general D-S algorithm and PCR5 algorithm.

参考文献

[1] General Editorial Council of Aeroengine Design Manual. Aeroengine design manual. Rotor dynamics and whole body vibration(19)[M]. Beijing: Aviation Industry Press, 2000. (in Chinese) 航空发动机设计手册总编委会. 航空发动机设计手册. 第19册, 转子动力学及整机振动[M]. 北京: 航空工业出版社, 2000.

[2] Volponi A. Data fusion for enhanced aircraft engine prognostics and health management, NASA CR-214055[R]. East Hartford: NASA, 2005.

[3] Yang J P, Huang H Z, Miao Q. Diagnosis method of aeroengine early fault based on the Dempster-Shafer evidence theory[J]. Journal of Aerospace Power, 2008, 23(12): 2327-2331. (in Chinese) 杨建平, 黄洪钟, 苗强. 基于证据理论的航空发动机早期故障诊断方法[J]. 航空动力学报, 2008, 23(12): 2327-2331.

[4] Lu F, Huang J Q, Chen Y. Research on performance fault fusion diagnosis of aero-engine component[J]. Journal of Aerospace Power, 2009, 24(7): 1649-1653. (in Chinese) 鲁峰, 黄金泉, 陈煜. 航空发动机部件性能故障融合诊断方法研究[J]. 航空动力学报, 2009, 24(7): 1649-1653.

[5] Chen L B, Song L Q, Chen G, et al. Study on fusion diagnosis techniques of wear faults in synthesized monitoring of aero-engine[J]. Journal of Aerospace Power, 2009, 24(1): 169-175. (in Chinese) 陈立波, 宋兰琪, 陈果, 等. 航空发动机滑油综合监控中的磨损故障融合诊断研究[J]. 航空动力学报, 2009, 24(1): 169-175.

[6] Yager R. On the Dempster-Shafer framework and new combination rules[J]. Information Sciences, 1987, 1(2): 93-138.

[7] Chen T, Sun J G, Hao Y. Neural network and Dempster-Shafter theory based fault diagnosis for aeroengine gas path[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6): 1014-1017. (in Chinese) 陈恬, 孙健国, 郝英. 基于神经网络和证据融合理论的航空发动机气路故障诊[J]. 航空学报, 2006, 27(6): 1014-1017.

[8] Deng Y, Shi W K, Zhu Z F. Efficient combination approach of conflict evidence[J]. Journal Infrared Millimeterand Waves, 2005, 23(1): 27-32. (in Chinese) 邓勇, 施文康, 朱振福. 一种有效处理冲突证据的组合方法[J]. 红外与毫米波学报, 2005, 23(1): 27-32.

[9] Hou J, Miao Z, Pan Q. A adaptive integration algorithms with DST and DSmT[J]. Microelectronics & Computer, 2006, 23(10): 150-152. (in Chinese) 侯俊, 苗壮, 潘泉. DST与DSmT自适应融合算法[J]. 微电子学与计算机, 2006, 23(10): 150-152.

[10] Sun Y, Bentabet L. A particle filtering and DSmT based approach for conflict resolving in case of target tracking with multiple cues[J]. Journal of Mathematical Imaging and Vision, 2010, 36(2): 159-167.

[11] Smarandache F, Dezert J. Proportional conflict redistribution rules for information fusion[M][C]//Smarandache F, Dezert J. Applications and advances of DSmT for information fusion. Rehoboth: American Research Press, 2006:3-68.

[12] Zhai X S, Hu J H, Xie S S, et al. Diagnosis of aero-engine with early vibration fault symptom using DSmT[J]. Journal of Aerospace Power, 2012, 27(2): 301-306. (in Chinese) 翟旭升, 胡金海, 谢寿生, 等. 基于DSmT的航空发动机早期振动故障融合诊断方法[J].航空动力学报, 2012, 27(2): 301-306.

[13] Hu J H, Xie S S, Luo G Q, et al. Fusion diagnosis of aero-engine wearing condition based on Dempster-Shafer proof theory[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(3): 343-346. (in Chinese) 胡金海, 谢寿生, 骆广琦, 等. 基于Dempster-Shafer证据理论的航空发动机磨损状况融合诊断[J]. 机械科学与技术, 2008, 27(3): 343-346.

[14] Ding Y Y, Li H R. A simple and effective improved D-S method for conflict evidence[J]. Command Control & Simulation, 2011, 33(2): 22-25. (in Chinese) 丁迎迎, 李洪瑞. 一种简单有效的处理冲突证据的D-S改进方法[J]. 指挥控制与仿真, 2011, 33(2): 22-25.

[15] Liang W, Wei H F, Zhou F. Fusion method of conflict evidence in D-S theory[J]. Computer Engineering and Applications, 2011, 47(6): 144-147.(in Chinese) 梁威, 魏宏飞, 周锋. D-S证据理论中一种冲突证据的融合方法[J].计算机工程与应用, 2011, 47(6): 144-147.

[16] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical Physical and Engineering Science, 1998, 454(1971): 903-995.

[17] Yang J M, Tian Y. Roller bearing fault diagnosis by using empirical mode decomposition and sphere-structured support vector machine[J]. Journal of Vibration, Measurement & Diagnosis, 2009, 29(2): 155-158. (in Chinese) 杨洁明, 田英. 基于EMD和球结构SVM的滚动轴承故障诊断[J]. 振动、测试与诊断, 2009, 29(2): 155-158.

文章导航

/