电子与控制

基于分数阶滑模的挠性航天器姿态鲁棒跟踪控制

  • 邓立为 ,
  • 宋申民
展开
  • 哈尔滨工业大学 控制理论与制导技术研究中心, 黑龙江 哈尔滨 150001
邓立为 男,博士研究生。主要研究方向:分数阶系统、航天器制导与控制。Tel:0451-86402204-8212 E-mail:dengliwei666@163.com;宋申民 男,博士,教授,博士生导师。主要研究方向:航天器轨道机动与姿态控制、非线性鲁棒控制与智能控制、先进滤波方法与组合导航等。Tel:0451-86402204-8214 E-mail:songshenmin@hit.edu.cn

收稿日期: 2012-10-19

  修回日期: 2013-03-18

  网络出版日期: 2013-03-25

基金资助

国家自然科学基金(61174037);国家"973"计划(2012CB821205);CAST创新基金(CAST20120602)

Flexible Spacecraft Attitude Robust Tracking Control Based on Fractional Order Sliding Mode

  • DENG Liwei ,
  • SONG Shenmin
Expand
  • Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China

Received date: 2012-10-19

  Revised date: 2013-03-18

  Online published: 2013-03-25

Supported by

National Natural Science Foundation of China (61174037);National Basic Research Program of China (2012CB821205);Innovation Fund of China Academy of Space Technology (CAST20120602)

摘要

针对挠性航天器姿态跟踪控制问题,提出一种新型的具有强鲁棒性的分数阶滑模控制器。利用分数阶微分算子的快速收敛性与信息记忆性,在滑模面与控制输入中均引入分数阶微分算子,使新型控制器具有分数阶微分与滑模控制的双重优点,从而使姿态跟踪控制系统具有更好的快速性、强鲁棒性和良好的抗干扰性。进一步使用Lyapunov理论与分数阶稳定性理论证明了整个系统的稳定性,分析了分数阶滑模面的优点。数值仿真验证了分数阶滑模控制器的有效性与良好的控制性能。

本文引用格式

邓立为 , 宋申民 . 基于分数阶滑模的挠性航天器姿态鲁棒跟踪控制[J]. 航空学报, 2013 , 34(8) : 1915 -1923 . DOI: 10.7527/S1000-6893.2013.0173

Abstract

A new robust fractional order sliding mode controller is proposed for flexible spacecraft attitude tracking control. The fractional differential operator is used both in the sliding surface and control input because of its rapid convergence and information memory, and the new controller has the dual advantage of a fractional differential operator and a sliding mode control, so that the flexible spacecraft attitude tracking control system has rapid convergence and strong robustness to external load disturbances and parameter variations. Furthermore, the stability of the whole system is proved by Lyapunov theory and fractional stability theory, and the convergence advantages of a fractional order sliding surface are analyzed. Numerical simulations are also included to reinforce the analytic results and to validate the excellent effect of the new robust fractional order sliding mode controller.

参考文献

[1] Song S M, Zhang B Q, Chen X L. Robust control of spacecraft attitude tracking for space fly-around mission. Systems Engineering and Electronics, 2011, 33(1): 120-126. (in Chinese) 宋申民, 张保群, 陈兴林. 空间绕飞任务中航天器姿态跟踪的鲁棒控制. 系统工程与电子技术, 2011, 33(1): 120-126.

[2] Shahravi M, Kabganian M. Attitude tracking and vibration of suppression of flexible spacecraft using implicit adaptive control law. Proceedings of the 2005 American Control Conference, 2005: 913-918.

[3] Boskovic J D, Li S M, Mehra R K. Robust adaptive variable structure control of spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 14-22.

[4] Boskovic J D, Li S M, Mehra R K. Robust tracking control design for spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 627-633.

[5] Lu K F, Xia Y Q, Zhu Z, et al. Sliding mode attitude tracking of rigid spacecraft with disturbances. Journal of the Fracklin Institute, 2012, 349(2): 413-440.

[6] Delavari H, Ghaderi R, Ranjbar A, et al. Fuzzy fractional order sliding mode controller for nonlinear systems. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(4): 963-978.

[7] Zhang B T, Pi Y G, Luo Y. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Transactions, 2012, 51(5): 649-656.

[8] Efe M O, Kasnakoglu C. A fractional adaptation law for sliding mode control. International Journal of Adaptive Control and Signal Processing, 2008, 22(10): 968-986.

[9] Efe M O. A sufficient condition for checking the attractiveness of a sliding manifold in fractional order sliding mode control. Asian Journal of Control, 2012, 14(4): 1118-1122.

[10] Dadras S, Momeni H R. Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 367-377.

[11] Chen D Y, Zhang R F, Sprott J C, et al. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control. Choas, 2012, 22(2): 023130(1-9).

[12] Aghababa M P. Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyper chaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 2012, 69(1-2): 247-261.

[13] Qi D L, Yang J, Zhang J L. The stability control of fractional order unifed chaotic system with sliding mode control treory. Chinese Physics B, 2010, 19(10): 100506(1-5).

[14] Podlubny I. Fractional differential equations. San Diego: Academic Press, 1999.

[15] Zhang B Q, Song S M, Chen X L. Decentralized robust saturated attitude coordination control of satellites within formation. Acta Aeronautica et Astronautica Sinica, 2011, 23(9): 1644-1655. (in Chinese) 张保群, 宋申民, 陈兴林. 编队卫星分布式鲁棒饱和姿态协同控制. 航空学报, 2011, 23(9): 1644-1655.

[16] Li S H, Ding S H, Li Q. Global set stabilization of the spacecraft attitude control problem based on quaternion. International Journal of Robust and Nonlinear Control, 2010, 20(1): 84-105.

[17] Sun W, Li Y, Li C P, et al. Convergence speed of a fractional order consensus algorithm over undirected scale-free networks. Asian Journal of Control, 2011, 13(6): 936- 946.

[18] Matignon D. Stability results for fractional differential equations with applications to control processing. Proceedings of IMACS Multiconference on Computational Engineering in Systems and Application, 1996: 963-968.

[19] Tepljakov A, Petlenkov E, Belikov J. FOMCON: fractional-order modeling and control toolbox for MATLAB. Proceedings of the 18th International Conference on Mixed Design of Integrated Circuits and Systems, 2011: 684-689.

文章导航

/