流体力学与飞行力学

压气机失速过程中的壁面压力分布特征

  • 罗志煌 ,
  • 李军 ,
  • 杨朴 ,
  • 吴云 ,
  • 刘东健 ,
  • 李凡玉
展开
  • 1. 空军工程大学 航空航天工程学院, 陕西 西安 710038;
    2. 陆军航空兵学院 飞行理论系, 北京 101123
罗志煌 男, 博士研究生。主要研究方向: 轴流压气机流动控制。Tel: 029-84787527 E-mail: luozhihuang-111@163.com;李军 男, 博士, 教授, 博士生导师。主要研究方向: 航空发动机稳定性控制, 等离子体流动控制。Tel: 029-84787527 E-mail: apsl87324@163.com

收稿日期: 2012-11-23

  修回日期: 2013-01-07

  网络出版日期: 2013-01-21

基金资助

国家自然科学基金(50906100)

Characteristics of Casing Static Pressure During Compressor Stall

  • LUO Zhihuang ,
  • LI Jun ,
  • YANG Pu ,
  • WU Yun ,
  • LIU Dongjian ,
  • LI Fanyu
Expand
  • 1. Aeronautic and Astronautic Engineering College, Air Force Engineering University, Xi'an 710038, China;
    2. Flight Theory Department, Institute of Army Aviation, Beijing 101123, China

Received date: 2012-11-23

  Revised date: 2013-01-07

  Online published: 2013-01-21

Supported by

National Natural Science Foundation of China (50906100)

摘要

为了深入认识失速团在不同时刻的特征,采用一种基于二维壁面静压谱的分析方法对几种典型状态下的单级轴流压气机转子叶尖流场静压分布特征进行了详细研究。结果表明:该方法能很好地观察不同时刻的失速团发展变化过程以及失速团的影响范围,同时还能判别失速团的个数以及大致的旋转速度。用此方法发现该压气机在进入失速后有1个大失速团,影响范围在4/5周向通道左右,而开大节气门后在退出失速的过程中失速团会分裂成为2个,且失速团的影响范围会变得很小,旋转速度增大。

本文引用格式

罗志煌 , 李军 , 杨朴 , 吴云 , 刘东健 , 李凡玉 . 压气机失速过程中的壁面压力分布特征[J]. 航空学报, 2013 , 34(9) : 2092 -2099 . DOI: 10.7527/S1000-6893.2013.0055

Abstract

To describe the characteristics of stall cells visually, an experimental investigation is performed with the method of casing static pressure countour analysis to study the flow field at the rotor tip for a single-stage axial compressor. The results indicate that the method could observe the developing process and influence area of the stall cells visually, estimate the number precisely and the rotating speed approximately. The frequency analysis validates the veracity of the method. This method finds that there is one cell which holds 4/5 of the passage of the compressor when a stall occurs, and then the stall cell splits to two and rotates faster by opening the valve.

参考文献

[1] Moore F K, Greitzer E M. A theory of post-stall transients in axial compression systems: Part Ⅰ—development of equations. ASME Paper, 85-GT-171, 1985.

[2] Greitzer E M, Moore F K. A theory of post-stall transients in axial compression systems: Part Ⅱ—application. ASME Paper, 85-GT-172, 1985.

[3] Garnier V H, Epstein A H, Greitzer E M. Rotating waves as a stall inception indication in axial compressors. ASME Journal of Turbomachinery, 1991, 113(2): 290- 301.

[4] Camp T R, Day I J. A study of spike and modal stall phenomena in a low-speed axial compressor. ASME Journal of Turbomachinery, 1998, 120(3): 393-401.

[5] Tong Z T. The interactive unsteady mechanism between tip leakage vortex, stall inception and micro tip injection in low-speed axial compressor. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2006. (in Chinese) 童志庭.轴流压气机中叶尖泄漏涡、失速先兆、叶尖微喷气非定常关联性的实验研究. 北京: 中国科学院工程热物理研究所, 2006.

[6] Lu X G, Chu W L, Zhu J Q. Mechanism of the interaction between casing treatment and tip leakage flow in a subsonic axial compressor. ASME Paper, 2006-GT-90077, 2006.

[7] McDougall, M, Cumpsty N A, Hynes T P. Stall inception in axial compressor. ASME Journal of Turbomachinery, 1990, 112(1): 116-125.

[8] Cumpsty N A. Part-circumference casing treatment and the effect on compressor stall. ASME Paper, 89-GT-312, 1989.

[9] Furukawa M, Inoue M, Saiki K, et al. The role of tip leakage vortex breakdown in compressor rotor aerodynamics. ASME Journal of Turbomachinery, 1999, 121(3): 469-480.

[10] Furukawa M, Saiki K, Yamada K, et al. Unsteady flow behavior due to breakdown of tip leakage vortex in an axial compressor rotor at near-stall condition. ASME Paper, 2000-GT-666, 2000.

[11] Mailach, R, Lehmann, I, Vogeler K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex. ASME Paper, 2000-GT-506, 2000.

[12] Maerz J, Hah C, Neise W. An experimental and numerical investigation into the mechanism of rotating instability. ASME Journal of Turbomachinery, 2002, 124(3): 367- 374.

[13] Hoying D A, Tan C S, Vo H D, et al. Role of blade passage flow structures in axial compressor rotating stall inception. ASME Journal of Turbomachinery, 1999, 121(4): 735-742.

[14] Vo H D, Tan C S, Greitzer E M. Criteria for spike initiated rotating stall. ASME Paper, 2005-GT-68374, 2005.

[15] Weichert S. Tip clearance flows in axial compressors: stall inception and stability enhancement. Cambridge: University of Cambridge, 2011.

文章导航

/