流体力学与飞行力学

基于FFD技术的大型运输机上翘后体气动优化设计

  • 王元元 ,
  • 张彬乾 ,
  • 郭兆电 ,
  • 董强
展开
  • 1. 西北工业大学 翼型叶栅空气动力国家重点实验室, 陕西 西安 710072;
    2. 中国航空工业发展研究中心, 北京 100012;
    3. 中航工业第一飞机设计研究院, 陕西 西安 710089
王元元 男,博士研究生。主要研究方向:飞行器气动布局设计,航空情报研究。E-mail:wyy_7758521@hotmail.com;张彬乾 男,教授,博士生导师。主要研究方向:飞行器设计,实验流体力学。Tel:029-88494846 E-mail:bqzhang@nwpu.edu.cn

收稿日期: 2012-09-25

  修回日期: 2012-12-02

  网络出版日期: 2012-12-18

Aerodynamic Optimization Design for Large Upswept Afterbody of Transport Aircraft Based on FFD Technology

  • WANG Yuanyuan ,
  • ZHANG Binqian ,
  • GUO Zhaodian ,
  • DONG Qiang
Expand
  • 1. National Key Laboratory of Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Aviation Industry Development Research Centre of China, Beijing 100012, China;
    3. The First Aircraft Institute of AVIC, Xi'an 710089, China

Received date: 2012-09-25

  Revised date: 2012-12-02

  Online published: 2012-12-18

摘要

利用非均匀有理B样条(NURBS)基函数属性建立了任意空间的自由变形(FFD)参数化方法,进一步结合无限插值(TFI)变形网格技术、二阶振荡粒子群优化(PSO)算法以及计算流体力学(CFD)数值模拟技术,构建了通用的气动外形优化设计系统。采用该系统对C17运输机上翘后体进行气动优化设计,在满足后体最大宽度、高度以及上翘角不减小的情况下,巡航状态减阻2.6%,压差阻力减小19.8%。流态分析显示,优化后体阻力减小的主要原因是后体截面近圆度的增加以及近圆度沿机身轴线的变化量的减小使得后体周向逆压梯度减小所致。研究结果表明本文建立的基于FFD技术的气动优化设计系统对于大型运输机上翘后体的气动优化设计具有较好的实用性。

本文引用格式

王元元 , 张彬乾 , 郭兆电 , 董强 . 基于FFD技术的大型运输机上翘后体气动优化设计[J]. 航空学报, 2013 , 34(8) : 1806 -1814 . DOI: 10.7527/S1000-6893.2013.0315

Abstract

A free-form deformation parameterization (FFD) method is established based on non-uniform rational B-spline (NURBS) basis function. Furthermore, by coupling the transfinite interpolation (TFI) grid deformation technology and computational fluid dynamics (CFD) method with improved particle swarm optimization (PSO) arithmetic,a general aerodynamic optimization design system is constructed. Then, the aerodynamic optimization design system is applied to designing a large upswept afterbody of transport aircraft C17 on the restrictions of nondecreasing maximum structure height, width and upswept angle. The optimized afterbody decreases the total drag by 2.6% and pressure drag by 19.8% respectively. A comparison analysis of the aerodynamic shape and flow pattern reveals that the key factors for the optimized afterbody to decrease the pressure drag greatly are the increased near-roundness of the afterbody cross-section and decreased near-roundness change ratio along the fuselage axis. The two factors enable the adverse pressure gradient along the circumferential direction to become smaller, which can suspend aferbody separation and weaken afterbody vortex strength. The aerodynamic optimization design system constructed in this paper has good practicability and engineering application prospect.

参考文献

[1] Yu Y Z, Liu J F, Jiang Z, et al. The investigation of flow control and drag reduction mechanism for thansport airplane aft-body. Acta Aerodynamica Sinica, 2011, 29(5): 640-644.(in Chinese) 于彦泽, 刘景飞, 蒋增, 等.大型飞机后体流动控制及减阻机理研究. 空气动力学学报, 2011, 29(5): 640-644.
[2] Zhang B Q, Wang Y Y, Duan Z Y, et al. Design method for large upswept afterbody of transport aircraft. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 1933-1939.(in Chinese) 张彬乾, 王元元, 段卓毅, 等.大上翘机身后体设计方法. 航空学报, 2010, 31(10): 1933-1939.
[3] Sederberg T W, Parry S R. Freeform deformation of solid geometric models. Computer Graphics, 1986, 22(4): 151-160.
[4] Coquilart S. Extended free-form deformations: a sculpturing tool for 3D geometric modeling. Computer Graphics,1990, 24(4): 187-196.
[5] Hsu W M, Hughes J F, Kaufman H. Direct manipulation of free-form deformation. Computer Graphics, 1992, 26(2): 177-184.
[6] Zhu X X. Modeling technology of free-form curve and surface. Beijing: Science Press, 2000: 70-85.(in Chinese) 朱心雄. 自由曲线曲面造型技术. 北京:科学出版社, 2000: 70-85.
[7] Kalra P, Mangili A, Thalmann N M, et al. Simulation of facial muscle actions based on rational free form deformation. Computer Graphics, 1992, 2(3): 59-69.
[8] Lamousin H J, Waggenspack W N. NURBS-based free-form deformations. Computer Graphics and Applications, 1994, 14(6): 59-65.
[9] Mengistu T T, Ghaly W S. A geometric representation of turbomachinery cascades using NURBS. AIAA-2002-318, 2002.
[10] Xing X Q, Damodaran M. Design of three-dimensional nozzle shape using NURBS, CFD and hybrid optimization strategies. AIAA-2004-4368, 2004.
[11] Dubuc L, Cantariti F, Woodgate M, et al. A grid deformation technique for unsteady flow computations. International Journal for Numerical Methods in Fluids, 2002, 32(3): 285-311.
[12] Smith R E. Transfinite interpolation (TFI) generation systems. In: Handbook of Grid Generation. England: CRC Press, 1998: 5-38.
[13] Wang Y Y, Zhang B Q, Chen Y C. Robust airfoil optimization based on improved particle swarm optimization method. Applied Mathematics and Mechanics, 2011, 32(10): 1245-1254.
[14] Patnaik S N. Neural network and regression approximations in high speed civil transport aircraft design optimization. NASA/TM-1998-206316, 1998.
[15] McKay M D, Beckman R J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics (American Statistical Association), 1979, 21(2): 239-245.
文章导航

/