| [1] |
ZHANG X R, ZHANG T Y, WANG G C, et al. Remote sensing object detection meets deep learning: A metareview of challenges and advances[J]. IEEE Geoscience and Remote Sensing Magazine, 2023, 11(4): 8-44.
|
| [2] |
赵其昌, 吴一全, 苑玉彬. 光学遥感图像舰船目标检测与识别方法研究进展[J]. 航空学报, 2024, 45(8): 029025.
|
|
ZHAO Q C, WU Y Q, YUAN Y B. Progress of ship detection and recognition methods in optical remote sensing images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 029025 (in Chinese).
|
| [3] |
刘延芳, 佘佳宇, 袁秋帆, 等. 无人机遥感图像实时小目标检测方法[J]. 航空学报, 2024, 45(14): 630119.
|
|
LIU Y F, SHE J Y, YUAN Q F, et al. Real-time small target detection networks for UAV remote sensing[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 630119 (in Chinese).
|
| [4] |
肖欣林, 施伟超, 郑向涛, 等. 基于多模型协同的舰船目标检测[J]. 航空学报, 2024, 45(14): 630241.
|
|
XIAO X L, SHI W C, ZHENG X T, et al. Multiple models collaboration for ship detection[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 630241 (in Chinese).
|
| [5] |
LI Z, WANG Y C, ZHANG N, et al. Deep learning-based object detection techniques for remote sensing images: A survey[J]. Remote Sensing, 2022, 14(10): 2385.
|
| [6] |
ZHOU D W, WANG Q W, QI Z H, et al. Class-incremental learning: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 9851-9873.
|
| [7] |
MASANA M, LIU X L, TWARDOWSKI B, et al. Class-incremental learning: Survey and performance evaluation on image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5513-5533.
|
| [8] |
MA B T, CONG Y, REN Y. IOSL: Incremental open set learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(4): 2235-2248.
|
| [9] |
KANG M X, ZHANG J P, ZHANG J M, et al. Alleviating catastrophic forgetting of incremental object detection via within-class and between-class knowledge distillation[C]∥ 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2023: 18848-18858.
|
| [10] |
方维维, 陈爱方, 孟娜, 等. 基于知识蒸馏的目标检测模型增量深度学习方法[J]. 工程科学与技术, 2022, 54(6): 59-66.
|
|
FANG W W, CHEN A F, MENG N, et al. Incremental deep learning method for object detection model based on knowledge distillation[J]. Advanced Engineering Sciences, 2022, 54(6): 59-66 (in Chinese).
|
| [11] |
KIM J, CHO H, KIM J, et al. SDDGR: Stable diffusion-based deep generative replay for class incremental object detection[C]∥ 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2024: 28772-28781.
|
| [12] |
KIM J, KU Y, KIM J, et al. VLM-PL: Advanced pseudo labeling approach for class incremental object detection via vision-language model[C]∥ 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2024: 4170-4181.
|
| [13] |
PENG C, ZHAO K, LOVELL B C. Faster ILOD: Incremental learning for object detectors based on faster RCNN[J]. Pattern Recognition Letters, 2020, 140: 109-115.
|
| [14] |
FENG T, WANG M, YUAN H J. Overcoming catastrophic forgetting in incremental object detection via elastic response distillation[C]∥ 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 9417-9426.
|
| [15] |
LIU Y Y, CONG Y, GOSWAMI D, et al. Augmented box replay: Overcoming foreground shift for incremental object detection[C]∥ 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2023: 11333-11343.
|
| [16] |
LIU Y Y, SCHIELE B, VEDALDI A, et al. Continual detection transformer for incremental object detection[C]∥ 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 23799-23808.
|
| [17] |
LI W Z, ZHOU J W, LI X, et al. InfRS: Incremental few-shot object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5644314.
|
| [18] |
张涛, 杨小冈, 卢孝强, 等. Dense RFB和LSTM遥感图像舰船目标检测[J]. 遥感学报, 2022, 26(9): 1859-1871.
|
|
ZHANG T, YANG X G, LU X Q, et al. Ship detection in remote sensing image based on dense RFB and LSTM[J]. National Remote Sensing Bulletin, 2022, 26(9): 1859-1871 (in Chinese).
|
| [19] |
JOSEPH K J, RAJASEGARAN J, KHAN S, et al. Incremental object detection via meta-learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9209-9216.
|
| [20] |
BAI L, SONG H, FENG T, et al. Revisiting class-incremental object detection: An efficient approach via intrinsic characteristics alignment and task decoupling[J]. Expert Systems with Applications, 2024, 257: 125057.
|
| [21] |
MO Q J, GAO Y P, FU S H, et al. Bridge past and future: Overcoming information asymmetry in incremental object detection[C]∥ Computer Vision-ECCV 2024. Cham: Springer Nature Switzerland, 2024: 463-480.
|
| [22] |
LU X N, DIAO W H, LI J X, et al. Few-shot incremental object detection in aerial imagery via dual-frequency prompt[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5624017.
|
| [23] |
YU Q Z, ZHU K, WANG W, et al. Incremental object detection with image-level labels[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(5): 2331-2341.
|
| [24] |
DONG N, ZHANG Y Q, DING M L, et al. Incremental-DETR: Incremental few-shot object detection via self-supervised learning[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(1): 543-551.
|
| [25] |
LI J Y, CAO Z J, GAN Q, et al. Class-incremental SAR obeject detection via adaptive distributed response distillation[C]∥ IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2024: 9922-9925.
|
| [26] |
DONG N, ZHANG Y, DING M, et al. Bridging non-co-occurrence with unlabeled in-the-wild data for incremental object detection[C]∥ Proceedings of the 35th International Conference on Neural Information Processing Systems, New York:ACM, 2021:30492-30503.
|
| [27] |
LI D, TASCI S, GHOSH S, et al. RILOD: Near real-time incremental learning for object detection at the edge[C]∥ Proceedings of the 4th ACM/IEEE Symposium on Edge Computing. New York:ACM, 2019: 113-126.
|
| [28] |
CERMELLI F, GERACI A, FONTANEL D, et al. Modeling missing annotations for incremental learning in object detection[C]∥ 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2022: 3699-3709.
|
| [29] |
WANG Y J, CHEN L Q, ZHAO T M, et al. High-dimension prototype is a better incremental object detection learner[C]∥ The Thirteenth International Conference on Learning Representations, 2025: 1-17.
|
| [30] |
WANG J B, CHEN Y M, ZHENG Z H, et al. CrossKD: Cross-head knowledge distillation for object detection[C]∥ 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2024: 16520-16530.
|
| [31] |
HAROON M, SHAHZAD M, FRAZ M M. Multisized object detection using spaceborne optical imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3032-3046.
|
| [32] |
禹文奇,程塨,王美君,等.MAR20:遥感图像军用飞机目标识别数据集[J].遥感学报,2023,27(12):2688-2696.
|
|
YU W Q, CHENG G, WANG M J, et al. MAR20: A benchmark for military aircraft recognition in remote sensing images[J]. National Remote Sensing Bulletin, 2023, 27(12): 2688-2696 (in Chinese).
|
| [33] |
LIU L Y, KUANG Z H, CHEN Y M, et al. IncDet: In defense of elastic weight consolidation for incremental object detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(6): 2306-2319.
|
| [34] |
MENEZES A G, DE MOURA G, ALVES C, et al. Continual object detection: A review of definitions, strategies, and challenges[J]. Neural Networks, 2023, 161: 476-493.
|