1 |
GARG P, DODIYAL A K. Reducing RF blackout during re-entry of the reusable launch vehicle[C]∥2009 IEEE Aerospace Conference. Piscataway: IEEE Press, 2009: 1-15.
|
2 |
JONES W L, Jr, CROSS A E. Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second: NASA-TN-D-6617[R]. Washington, D.C.: NASA, 1972.
|
3 |
BOYER D W, TOURYAN K J. Experimental and numerical studies of flush electrostatic probes in hypersonic ionized flows: I. Experiment[J]. AIAA Journal, 1972, 10(12): 1667-1674.
|
4 |
SCOTT M B, HOFFMAN R. The Mercury programming system[C]∥Proceedings of Eastern Joint Computer Conference: Computers - Key to Total Systems Control. New York: ACM, 1961: 47-53.
|
5 |
SCHROEDER L C, RUSSO F P. Flight investigation and analysis of alleviation of communications blackout by water injection during Gemini 3 reentry: NASA TM X-1521[R]. Washington, D.C.: NASA, 1968.
|
6 |
LEWIS J H, Jr, SCALLION W I. Flight parameters and vehicle performance for project fire flight I, launched April 14, 1964: NASA-TN-D-2996[R]. Washington, D.C.: NASA, 1965.
|
7 |
LEWIS J H, Jr, SCALLION W I. Flight parameters and vehicle performance for project fire flight II, launched May 22, 1965: NASA-TN-D-3569[R]. Washington, D.C.: NASA, 1966.
|
8 |
欧阳文冲. 高超声速等离子体流场及电磁波传播特性数值模拟[D]. 西安: 西安电子科技大学, 2020: 33-50.
|
|
OUYANG W C. Numerical simulation of hypersonic plasma flow field and electromagnetic wave propagation characteristics[D]. Xi’an: Xidian University, 2020: 33-50 (in Chinese).
|
9 |
YANG M, DONG P, XIE K, et al. Broadband microwave reflectometry plasma diagnostic based on invariant point of reflection data[J]. Physics of Plasmas, 2021, 28(10): 102105.
|
10 |
WANG J J, LIU Y M, LIU X T, et al. Robust model-predictive control for inductively coupled plasma generation with a semiphysical simulation[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3380-3389.
|
11 |
YAO B, LI X P, SHI L, et al. A multiscale model of reentry plasma sheath and its nonstationary effects on electromagnetic wave propagation[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2227-2234.
|
12 |
XIE K, YANG M, BAI B W, et al. Re-entry communication through a plasma sheath using standing wave detection and adaptive data rate control[J]. Journal of Applied Physics, 2016, 119(2): 023301.
|
13 |
张浩杰. 等离子鞘套传输环境下自适应编码技术研究[D]. 西安: 西安电子科技大学, 2020: 85-100.
|
|
ZHANG H J. Research on adaptive coding technology in plasma sheath transmission environment[D]. Xi’an: Xidian University, 2020: 85-100 (in Chinese).
|
14 |
李于衡, 罗斌, 郭文鸽, 等. 中继卫星Ka频段支持飞船再入返回通信可行性分析[J]. 载人航天, 2015, 21(6): 582-588.
|
|
LI Y H, LUO B, GUO W G, et al. Feasibility analysis of using Ka-band of TRDS to support wireless communication for spacecraft reentry[J]. Manned Spaceflight, 2015, 21(6): 582-588 (in Chinese).
|
15 |
ARAPOGLOU P D, LIOLIS K, BERTINELLI M, et al. MIMO over satellite: A review[J]. IEEE Communications Surveys & Tutorials, 2011, 13(1): 27-51.
|
16 |
魏麟. 航空移动卫星业务通信信道模型及性能研究[J]. 航空科学技术, 2007, 18(5): 30-34.
|
|
WEI L. A simulation study of aeronautical mobile satellite services communication channels and performance[J]. Aeronautical Science and Technology, 2007, 18(5): 30-34 (in Chinese).
|
17 |
LYU X T, JIANG C X, FENG W, et al. A shock tube experimental system for communication performance evaluation under the time-varying plasma flow channel[J]. IEEE Transactions on Plasma Science, 2017, 45(9): 2450-2459.
|
18 |
LIN T C, SPROUL L K. Influence of reentry turbulent plasma fluctuation on EM wave propagation[J]. Computers & Fluids, 2006, 35(7): 703-711.
|
19 |
YANG M, LI X P, WANG D, et al. Propagation of phase modulation signals in time-varying plasma[J]. AIP Advances, 2016, 6(5): 055110.
|
20 |
YAO B, LI X P, SHI L, et al. A layered fluctuation model of electron density in plasma sheath and instability effect on electromagnetic wave at Ka band[J]. Aerospace Science and Technology, 2018, 78: 480-487.
|
21 |
YAO B, LI X P, SHI L, et al. A geometric-stochastic integrated channel model for hypersonic vehicle: A physical perspective[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4328-4341.
|
22 |
YAO B, SHI L, LI X P, et al. Experimental study on correlation between amplitude and phase of electromagnetic wave affected by time-varying plasma by amplitude-modulated radio frequency plasma generator[J]. Physics of Plasmas, 2021, 28(4): 042107.
|
23 |
ZHANG Q Q, KASSAM S A. Finite-state Markov model for Rayleigh fading channels[J]. IEEE Transactions on Communications, 1999, 47(11): 1688-1692.
|
24 |
TAN C C, BEAULIEU N C. First-order Markov modeling for the Rayleigh fading channel[C]∥IEEE GLOBECOM 1998. Piscataway: IEEE Press, 1998: 3669-3674.
|
25 |
TAN C C, BEAULIEU N C. On first-order Markov modeling for the Rayleigh fading channel[J]. IEEE Transactions on Communications, 2000, 48(12): 2032-2040.
|
26 |
PIMENTEL C, FALK T H, LISBOA L. Finite-state Markov modeling of correlated Rician-fading channels[J]. IEEE Transactions on Vehicular Technology, 2004, 53(5): 1491-1501.
|
27 |
SADEGHI P, KENNEDY R A, RAPAJIC P B, et al. Finite-state Markov modeling of fading channels: A survey of principles and applications[J]. IEEE Signal Processing Magazine, 2008, 25(5): 57-80.
|
28 |
王柏懿, 徐燕侯, 嵇震宇. 电磁波在非均匀有损耗再入等离子鞘层中的传播[J]. 宇航学报, 1985, 6(1): 35-46.
|
|
WANG B Y, XU Y H, JI Z Y. Propagation of electromagnetic waves in inhomogenous and lossy reentry plasma sheath layer[J]. Journal of Astronautics, 1985, 6(1): 35-46 (in Chinese).
|
29 |
HE G L, ZHAN Y F, GE N, et al. Measuring the time-varying channel characteristics of the plasma sheath from the reflected signal[J]. IEEE Transactions on Plasma Science, 2014, 42(12): 3975-3981.
|
30 |
LI L, ZHAO J X.LT Code with a new degree distribu-tion[C]∥2010 International Conference on Multimedia Information Networking and Security. Piscataway: IEEE Press, 2010: 531-535.
|
31 |
ZHANG H J, BAO W M, YANG M, et al. Adaptive classification fountain codes for reentry communication[J]. IEEE Access, 2019, 7: 62911-62919.
|
32 |
ZHANG H J, YANG M, BAO W M, et al. Short-frame fountain code for plasma sheath with “communication windows”[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15569-15579.
|
33 |
YANG M, TANG J C, LIU H Y, et al. A novel demodulation method based on spectral clustering for phase-modulated signals interrupted by the plasma sheath channel[J]. IEEE Transactions on Plasma Science, 2020, 48(10): 3544-3551.
|
34 |
LIU H Y, LIU Y M, YANG M, et al. A joint demodulation and estimation algorithm for plasma sheath channel: Extract principal curves with deep learning[J]. IEEE Wireless Communications Letters, 2020, 9(4): 433-437.
|
35 |
BOUTROS J, VITERBO E. Signal space diversity: A power- and bandwidth-efficient diversity technique for the Rayleigh fading channel[J]. IEEE Transactions on Information Theory, 1998, 44(4): 1453-1467.
|
36 |
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]∥2017 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE Press, 2017.
|
37 |
LIU H Y, LIU Y M, YANG M, et al. On the characterizations of OTFS modulation over multipath rapid fading channel[J]. IEEE Transactions on Wireless Communications, 2023, 22(3): 2008-2021.
|