1 |
胡庆雷, 邵小东, 杨昊旸, 等. 航天器多约束姿态规划与控制:进展与展望[J]. 航空学报, 2022, 43(10): 527351.
|
|
HU Q L, SHAO X D, YANG H Y, et al. Spacecraft attitude planning and control under multiple constraints: Review and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527351 (in Chinese).
|
2 |
李敏,袁利,魏春岭. 基于混合状态机的航天器自主绕飞多模态控制[J]. 航空学报, 2023, 44(18): 328296.
|
|
LI M, YUAN L, WEI C L. Spacecraft autonomous fly-around multi-mode control based-on hybrid state machine[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 328296.
|
3 |
ZHANG D W, LIU G P. Output feedback predictive control for discrete quasilinear systems with application to spacecraft flying-around[J]. Asian Journal of Control, 2022, 24(4): 1846-1861.
|
4 |
ZHANG D W, LIU G P. Coordinated control of quasilinear multiagent systems via output feedback predictive control[J]. ISA Transactions, 2022, 128: 58-70.
|
5 |
HUANG Y, JIA Y M. Adaptive finite-time 6-DOF tracking control for spacecraft fly around with input saturation and state constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3259-3272.
|
6 |
HUANG Y, JIA Y M. Adaptive fixed-time six-DOF tracking control for noncooperative spacecraft fly-around mission[J]. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1796-1804.
|
7 |
SU Y Z, YANG Y J, YANG X R, et al. Attitude tracking control for observation spacecraft flying around the target spacecraft[J]. IET Control Theory & Applications, 2021, 15(14): 1868-1881.
|
8 |
WANG Y, JI H B. Input-to-state stability-based adaptive control for spacecraft fly-around with input saturation[J]. IET Control Theory & Applications, 2020, 14(10): 1365-1374.
|
9 |
ZHANG R, HAN C, RAO Y R, et al. Spacecraft fast fly-around formations design using the bi-teardrop configuration[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(7): 1542-1555.
|
10 |
HUANG Y, JIA Y M. Robust adaptive fixed-time tracking control of 6-DOF spacecraft fly-around mission for noncooperative target[J]. International Journal of Robust and Nonlinear Control, 2018, 28(6): 2598-2618.
|
11 |
LIU L, LIU J G, WU Y M. Event-triggered coordinated control for multiple solar sail formation flying around planetary displaced orbits[J]. Acta Astronautica, 2021, 184: 286-298.
|
12 |
WANG W, BAOYIN H X, MENGALI G, et al. Solar sail cooperative formation flying around L2-type artificial equilibrium points[J]. Acta Astronautica, 2020, 169: 224-239.
|
13 |
刘国平. 具有时变通信受限非线性信息物理系统的网络化预测控制[J]. 控制理论与应用, 2022, 39(1): 145-153.
|
|
LIU G P. Networked predictive control of nonlinear cyber physical systems with time-varying communication constraints[J]. Control Theory & Applications, 2022, 39(1): 145-153 (in Chinese).
|
14 |
GU Z, YAN S, AHN C K, et al. Event-triggered dissipative tracking control of networked control systems with distributed communication delay[J]. IEEE Systems Journal, 2022, 16(2): 3320-3330.
|
15 |
MASTANI E, RAHMANI M. Dynamic output feedback control for networked systems subject to communication delays, packet dropouts, and quantization[J]. Journal of the Franklin Institute, 2021, 358(8): 4303-4325.
|
16 |
ZHAO Z Y, YI X J, MA L F, et al. Quantized recursive filtering for networked systems with stochastic transmission delays[J]. ISA Transactions, 2022, 127: 99-107.
|
17 |
DUAN G R. High-order fully actuated system approaches: Part I. Models and basic procedure[J]. International Journal of Systems Science, 2021, 52(2): 422-435.
|
18 |
ZHANG D W, LIU G P, CAO L. Coordinated control of high-order fully actuated multiagent systems and its application: A predictive control strategy[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 4362-4372.
|
19 |
ZHANG D W, LIU G P, CAO L. Constrained cooperative control for high-order fully actuated multiagent systems with application to air-bearing spacecraft simulators[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(3): 1570-1581.
|
20 |
MENG R, HUA C C, LI K, et al. Adaptive event-triggered control for uncertain high-order fully actuated system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(11): 4438-4442.
|
21 |
DUAN G Q, LIU G P. Attitude and orbit optimal control of combined spacecraft via a fully-actuated system approach[J]. Journal of Systems Science and Complexity, 2022, 35(2): 623-640.
|
22 |
刘暾, 赵钧. 空间飞行器动力学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2003: 83-86.
|
|
LIU T, ZHAO J. Dynamics of Spacecraft[M]. Harbin: Harbin Institute of Technology Press, 2003: 83-86 (in Chinese).
|
23 |
DUAN G R. High-order fully actuated system approaches: Part X. Basics of discrete-time systems[J]. International Journal of Systems Science, 2022, 53(4): 810-832.
|
24 |
ZHANG D W, LIU G P. Predictive control for networked high-order fully actuated systems subject to communication delays and external disturbances[J]. ISA Transactions, 2023, 139: 425-435.
|
25 |
ZHANG D W, LIU G P, CAO L. Predictive control of discrete-time high-order fully actuated systems with application to air-bearing spacecraft simulator[J]. Journal of the Franklin Institute, 2023, 360(8): 5910-5927.
|
26 |
ZHANG D W, LIU G P, CAO L. Proportional integral predictive control of high-order fully actuated networked multiagent systems with communication delays[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(2): 801-812.
|
27 |
AMATO F, COSENTINO C, DE TOMMASI G, et al. Input⁃output finite-time stabilization of linear time-varying discrete-time systems[J]. IEEE Transactions on Automatic Control, 2022, 67(9): 4438-4450.
|
28 |
BABIARZ A, CZORNIK A, SIEGMUND S. On stabilization of discrete time-varying systems[J]. SIAM Journal on Control and Optimization, 2021, 59(1): 242-266.
|