1 |
唐亮, 李平, 周立新. 液体火箭发动机液膜冷却研究综述[J]. 火箭推进, 2020, 46(1): 1-12.
|
|
TANG L, LI P, ZHOU L X. Review on liquid film cooling of liquid rocket engine[J]. Journal of Rocket Propulsion, 2020, 46(1): 1-12 (in Chinese).
|
2 |
张锋, 仲伟聪. 膜冷却推力室传热计算研究[J]. 火箭推进, 2009, 35(4): 34-37, 48.
|
|
ZHANG F, ZHONG W C. Computational investigation of heat transfer for film cooling thrust chamber[J]. Journal of Rocket Propulsion, 2009, 35(4): 34-37, 48 (in Chinese).
|
3 |
吴凌峰, 杨成虎, 姚锋, 等. 单股自由圆射流撞壁雾化实验[J]. 火箭推进, 2020, 46(1): 44-51.
|
|
WU L F, YANG C H, YAO F, et al. Atomization experiment of single free circular jet impinging against wall[J]. Journal of Rocket Propulsion, 2020, 46(1): 44-51 (in Chinese).
|
4 |
ARAKERI J, RAO K P. On radial film flow on a horizontal surface and the circular hydraulic jump[J]. Journal of the Indian Institute of Science, 2013, 76: 73-91.
|
5 |
BLACKFORD B L. The hydraulic jump in radially spreading flow: A new model and new experimental data[J]. American Journal of Physics, 1996, 64(2): 164-169.
|
6 |
BOHR T, DIMON P, PUTKARADZE V. Shallow-water approach to the circular hydraulic jump[J]. Journal of Fluid Mechanics, 1993, 254: 635-648.
|
7 |
BOUAINOUCHE M, BOURABAA N, DESMET B. Numerical study of the wall shear stress produced by the impingement of a plane turbulent jet on a plate[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 1997, 7(6): 548-564.
|
8 |
BRECHET Y, NÉDA Z. On the circular hydraulic jump[J]. American Journal of Physics, 1999, 67(8): 723-731.
|
9 |
BUSH J W M, ARISTOFF J M. The influence of surface tension on the circular hydraulic jump[J]. Journal of Fluid Mechanics, 2003, 489: 229-238.
|
10 |
KIBAR A, KARABAY H, YIĞIT K S, et al. Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces[J]. Experiments in Fluids, 2010, 49(5): 1135-1145.
|
11 |
林庆国. 空间轨控发动机高效燃烧室仿真与试验研究[D]. 长沙: 国防科技大学, 2015.
|
|
LIN Q G. Simulation and experiment research on the high efficient combustion chamber for space orbit maneuvering rocket engine[D]. Changsha: National University of Defense Technology, 2015 (in Chinese).
|
12 |
GOOD R, NOLLET B. Fluid film distribution investigation for liquid film cooling application: AIAA-2017-4920[R]. Reston: AIAA, 2017.
|
13 |
HASSON D, PECK R E. Thickness distribution in a sheet formed by impinging jets[J]. American Institute of Chemical Engineers Journal, 1964, 10(5): 752-754.
|
14 |
BREMOND N, VILLERMAUX E. Atomization by jet impact[J]. Journal of Fluid Mechanics, 2006, 549: 273-306.
|
15 |
YANG L J, ZHAO F, FU Q F, et al. Liquid sheet formed by impingement of two viscous jets[J]. Journal of Propulsion and Power, 2014, 30(4): 1016-1026.
|
16 |
YANG L J, LI P H, FU Q F. Liquid sheet formed by a Newtonian jet obliquely impinging on pro/hydrophobic surfaces[J]. International Journal of Multiphase Flow, 2020, 125: 103192.
|
17 |
唐亮, 胡锦华, 刘计武, 等. 倾斜射流撞壁实验研究及液膜几何参数建模[J]. 航空学报, 2020, 41(12): 124601.
|
|
TANG L, HU J H, LIU J W, et al. Experimental study on oblique jet wall impingement and geometrical parameter modeling of liquid film[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124601 (in Chinese).
|
18 |
唐亮, 李平, 周立新, 等. 倾斜射流撞壁形成的液膜外形的理论建模[J]. 推进技术, 2021, 42(2): 327-334.
|
|
TANG L, LI P, ZHOU L X, et al. Theoretical modeling of liquid sheet shape formed by oblique jet impinging onto wall[J]. Journal of Propulsion Technology, 2021, 42(2): 327-334 (in Chinese).
|
19 |
KATE R P, DAS P K, CHAKRABORTY S. Effects of jet obliquity on hydraulic jumps formed by impinging circular liquid jets on a moving horizontal plate[J]. Journal of Fluids Engineering, 2009, 131(3): 034502.
|
20 |
MERTENS K, PUTKARADZE V, VOROBIEFF P. Morphology of a stream flowing down an inclined plane. Part 1. Braiding[J]. Journal of Fluid Mechanics, 2005, 531: 49-58.
|
21 |
WILSON D I, LE B L, DAO H D A, et al. Surface flow and drainage films created by horizontal impinging liquid jets[J]. Chemical Engineering Science, 2012, 68(1): 449-460.
|
22 |
WANG R X, HUANG Y, FENG X, et al. Semi-empirical model for the engine liquid fuel sheet formed by the oblique jet impinging onto a plate[J]. Fuel, 2018, 233: 84-93.
|
23 |
FARD M, ASHGRIZ N, MOSTAGHIMI J. A numerical model for flow simulation in spray nozzles: AIAA-2004-1156[R]. Reston: AIAA, 2004.
|
24 |
KIBAR A. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: Energy transformation[J]. Fluid Dynamics Research, 2016, 48(1): 015501.
|
25 |
KIBAR A. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces[J]. Fluid Dynamics Research, 2017, 49(1): 015502.
|
26 |
KIBAR A. Experimental and numerical investigation on a liquid jet impinging on a vertical superhydrophobic surface: Spreading and reflection[J]. Progress in Computational Fluid Dynamics, 2018, 18(3): 150-163.
|
27 |
SARCHAMI A, ASHGRIZ N, TRAN H. A spray model to predict droplet size distribution produced by wall impingement nozzle: AIAA-2008-3837[R]. Reston: AIAA, 2008.
|
28 |
GRADECK M, KOUACHI A, DANI A, et al. Experimental and numerical study of the hydraulic jump of an impinging jet on a moving surface[J]. Experimental Thermal and Fluid Science, 2006, 30(3): 193-201.
|
29 |
CHO M J, THOMAS B G, LEE P J. Three-dimensional numerical study of impinging water jets in runout table cooling processes[J]. Metallurgical and Materials Transactions B, 2008, 39(4): 593-602.
|
30 |
FUJIMOTO H, SUZUKI Y, HAMA T, et al. Flow characteristics of circular liquid jet impinging on a moving surface covered with a water film[J]. ISIJ International, 2011, 51(9): 1497-1505.
|
31 |
赵林林, 丁玉栋, 朱恂, 等. 不同壁面特性下液膜铺展性能数值模拟[J]. 原子能科学技术, 2017, 51(5): 865-871.
|
|
ZHAO L L, DING Y D, ZHU X, et al. Numerical simulation of liquid film spreading performance with different wall features[J]. Atomic Energy Science and Technology, 2017, 51(5): 865-871 (in Chinese).
|
32 |
COOKE J J, ARMSTRONG L M, LUO K H, et al. Adaptive mesh refinement of gas-liquid flow on an inclined plane[J]. Computers & Chemical Engineering, 2014, 60: 297-306.
|
33 |
邱添. 液体射流冲击平板数值模拟研究[D]. 天津: 中国民航大学, 2020.
|
|
QIU T. Liquid jet plate imping numerical simulation[D]. Tianjin: Civil Aviation University of China, 2020 (in Chinese).
|
34 |
BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
|