[1] WRIGHT M J, HWANG H H, SCHWENKE D W. Rec-ommended collision integrals for transport property com-putations part II:Mars and Venus entries[J]. AIAA Journal, 2007, 45(1):281-288. [2] JOHNSTON C, BRANDIS A, SUTTON K. Shock layer radiation modeling and uncertainty for Mars entry:AIAA-2012-2866[R]. Reston:AIAA, 2012. [3] EDQUIST K T, HOLLIS B R, JOHNSTON C O, et al. Mars science laboratory heat shield aerothermodynamics:Design and reconstruction[J]. Journal of Spacecraft and Rockets, 2014, 51(4):1106-1124. [4] 吕俊明, 黄飞, 苗文博, 等. 火星进入气体辐射加热研究进展[J]. 宇航学报, 2019, 40(5):489-500. LV J M, HUANG F, MIAO W B, et al. Review of gas radiative heating for Mars entry[J]. Journal of Astronautics, 2019, 40(5):489-500(in Chinese). [5] HOLLIS B R, PRABHU D K. Assessment of laminar, convective aeroheating prediction uncertainties for Mars-entry vehicles[J]. Journal of Spacecraft and Rockets, 2013, 50(1):56-68. [6] PARK C, HOWE J T, JAFFE R L, et al. Review of chemical-kinetic problems of future NASA missions. II-Mars entries[J]. Journal of Thermophysics and Heat transfer, 1994, 8(1):9-23. [7] JOHNSTON C O, BRANDIS A M. Modeling of nonequi-librium CO Fourth-Positive and CN Violet emission in CO2-N2 gases[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 149:303-317. [8] 董士奎, 余其铮, 刘林华,等. 一种新的CO2高温辐射特性窄谱带模型参数计算方法[J]. 工程热物理学报, 2001, 22(S1):177-180. DONG S K, YU Q ZH, LIU L H, et al. A new method of calculating high temperature radiative property parameters of narrow-band model for CO2[J]. Journal of Engineering Thermophysics, 2001, 22(S1):177-180(in Chinese). [9] CRUDEN B A, BRANDIS A M. Updates to the NEQAIR radiation solver[R]. Washington, D.C.:NASA, 2014. [10] PALMER G, CRUDEN B. Experimental validation of CO2 radiation simulations:AIAA-2012-3188[R]. Reston:AIAA, 2012. [11] TASHKUN S A, PEREVALOV V I. CDSD-4000:High-resolution, high-temperature carbon dioxide spectroscopic databank[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(9):1403-1410. [12] LEMAL A, TAKAYANAGI H, NOMURA S, et al. Simulations of Carbon-Dioxide equilibrium infrared radiation measurements[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(1):184-195. [13] ROTHMAN L S, GORDON I E, BARBER R J, et al. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15):2139-2150. [14] 张军, 王国林, 马昊军, 等. 高温二氧化碳气体红外辐射实验研究[J]. 光谱学与光谱分析, 2014, 34(12):3169-3173. ZHANG J, WANG G L, MA H J, et al. Infrared radiation experimental measurement and analysis of Carbon Dioxide at high temperature[J]. Spectroscopy and Spectral Analysis, 2014, 34(12):3169-3173(in Chinese). [15] 韩子健, 彭俊, 胡宗民, 等. JF-12激波风洞在火星进入环境下的运行特性[J]. 航空学报, 2021, 42(3):124129. HAN Z J, PENG J, HU Z M, et al. Operating character-istics of JF-12 shock tunnel in Mars entry tests[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):124129(in Chinese). [16] CRUDEN B. Radiance measurement for low density Mars entry:AIAA-2012-2742[R]. Reston:AIAA, 2012. [17] CRUDEN B A, PRABHU D, MARTINEZ R. Absolute radiation measurement in Venus and Mars entry condi-tions[J]. Journal of Spacecraft and Rockets, 2012, 49(6):1069-1079. [18] TAKAYANAGI H, FUJITA K, NISHIKINO Y. Shock radiation measurements from carbon dioxide flow from VUV to IR region:AIAA-2011-3631[R]. Reston:AIAA, 2011. [19] TAKAYANAGI H, FUJITA K. Infrared radiation meas-urement behind shock wave in Mars simulant gas for aerocapture missions:AIAA-2013-2504[R]. Reston:AIAA, 2013. [20] CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51:379-402. [21] GUPTA R N, YOS J M, THOMPSON R A, et al. A re-view of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K:NASA RP-1232[R]. Washington, D.C.:NASA, 1990. [22] WRIGHT M J, BOSE D, PALMER G E, et al. Recom-mended collision integrals for transport property computa-tions part Ⅰ:Air species[J]. AIAA Journal, 2005, 43(12):2558-2564. [23] GNOFFO P A, GUPTA R N, SHINN J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium:NASA TP-2867[R]. Washington, D.C.:NASA, 1989. [24] CAMAC M. CO2 relaxation processes in shock waves[M]//Fundamental Phenomena in Hypersonic Flow. Ithaca:Cornell University Press, 1966:195-215. [25] KUSTOVA E, MEKHONOSHINA M, KOSAREVA A. Relaxation processes in carbon dioxide[J]. Physics of Fluids, 2019, 31(4):046104. [26] PARK C. Nonequilibrium air radiation (NEQAIR) pro-gram:User's manual:NASA TM 86707[R]. Washing-ton, D.C.:NASA, 1985. [27] 刘林华, 余其铮, 阮立明, 等. 求解辐射传递方程的离散坐标法[J]. 计算物理, 1998, 15(3):83-89. LIU L H, YU Q Z, RUAN L M, et al. Discrete ordinate solutions of radiative transfer equation[J]. Chinese Journal of Computation Physics, 1998, 15(3):83-89(in Chinese). [28] NIU Q L, YUAN Z C, CHEN B, et al. Infrared radiation characteristics of a hypersonic vehicle under time-varying angles of attack[J]. Chinese Journal of Aeronautics, 2019, 32(4):861-874. [29] 郝景科, 艾邦成, 吕俊明,等. 高超声速再入飞船气体热辐射计算边界虚网格方法[J]. 航空动力学报, 2017, 32(8):1827-1834. HAO J K, AI B C, LÜ J M. Boundary ghost cell method for gas heat radiation calculation of hypersonic re-entry spacecraft[J]. Journal of Aerospace Power, 2017, 32(8):1827-1834(in Chinese). [30] CRUDEN B A, BRANDIS A M, PRABHU D K. Meas-urement and characterization of mid-wave infrared radia-tion in CO2 shocks:AIAA-2014-2962[R]. Reston:AIAA, 2014. [31] TAKAYANAGI H, LEMAL A, NOMURA S, et al. Measurements of Carbon Dioxide nonequilibrium infrared radiation in shocked and expanded flows[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(2):483-494. [32] LYU J M, CHENG X L, YU J J, et al. Spectral radiant intensity calculation of air in shock tube[C]//31st Interna-tional Symposium on Shock Waves, 2017:1225-1234. [33] 吕俊明, 李飞, 林鑫, 等. 氮气辐射强度的激波管测量与验证[J]. 实验流体力学, 2019, 33(3):25-30, 111. LYU J M, LI F, LIN X, et al. Measurement and validation of nitrogen radiative intensity in shock tube[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3):25-30, 111(in Chinese). |