[1] 朱敏. 基于超限学习机的航空电子设备PHM关键技术研究[D]. 烟台:海军航空大学,2019:10-20. ZHU M. Research on key technologies of PHM for avionics based on extreme learning machine[D]. Yantai:Naval Aviation University, 2019:10-20(in Chinese). [2] PENG K X, ZHANG K, LI G. Online contribution rate based fault diagnosis for nonlinear industrial processes[J]. ActaAutomatica Sinica, 2014, 40(3):423-430. [3] 范仁周, 陈瑞林, 张锡明. 机载电子设备地面仿真检测系统[J]. 航空学报, 1990, 11(2):47-53. FAN R Z, CHEN R L, ZHANG X M. Aground simulation-inspection system for avionic devices[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(2):47-53(in Chinese). [4] 刘江平, 王冬青, 马莉莉, 等. 航空装备故障检测决策建模仿真研究[J]. 计算机仿真, 2015, 32(4):79-82. LIU J P, WANG D Q, MA LL, et al. Simulation on aviation equipment fault detection decision model based on UML[J]. Computer Simulation, 2015, 32(4):79-82(in Chinese). [5] 翟旭升, 杨仕美, 段朋振, 等. 航空发动机非线性分布式控制系统故障检测[J]. 电光与控制, 2020, 27(7):106-110. ZHAI X S, YANG S M, DUAN P Z, et al. Fault detection for aeroengine's nonlinear distributed controlsystem[J]. Electronics Optics & Control, 2020, 27(7):106-110(in Chinese). [6] 缑林峰, 王镛根. 航空发动机控制系统故障检测仿真平台研究[J]. 计算机仿真, 2007, 24(12):74-76, 80. GOU L F, WANG Y G. A fault detection simulation platform foraero engine control system[J]. Computer Simulation, 2007, 24(12):74-76, 80(in Chinese). [7] 陶立权, 刘程, 张正, 等. 基于观测器的传感器故障检测方法对比分析[J]. 航空发动机, 2020, 46(3):46-53. TAO L Q, LIU C, ZHANG Z, et al.Comparison and analysis of sensor fault detection methods based on observer[J]. Aeroengine, 2020, 46(3):46-53(in Chinese). [8] 薄翠梅, 李俊, 张广明, 等. 自适应阈值故障检测方法在DAMADICS基准平台中的应用[J]. 计算机集成制造系统, 2010, 16(6):1279-1285. BO C M, LI J, ZHANG G M, et al. Application of fault detection based on adaptive threshold in the DAMDDICS benchmarkproblem[J]. Computer Integrated Manufacturing Systems, 2010, 16(6):1279-1285(in Chinese). [9] YIN S, GAO H J, QIU J B, et al. Fault detection for nonlinear process with deterministic disturbances:A just-in-time learning based data driven method[J]. IEEE Transactions on Cybernetics, 2017, 47(11):3649-3657. [10] SMART E, BROWN D, AXEL-BERG L. Comparing one and two class classification methods for multiple fault detection on an induction motor[C]//2013 IEEE Symposium on Industrial Electronics & Applications. Piscataway:IEEE Press, 2013:132-137. [11] 殷锴, 钟诗胜, 那媛, 等. 基于BP神经网络的航空发动机故障检测技术研究[J]. 航空发动机, 2017, 43(1):53-57. YIN K, ZHONG SS, NA Y, et al. Research on aeroengine fault detection technology based on BP neural network[J]. Aeroengine, 2017, 43(1):53-57(in Chinese). [12] 崔芮华, 李锋锋, 李英男, 等. 基于连续小波Tsallis奇异熵的航空交流电弧故障检测[J]. 电气传动, 2020, 50(12):93-98. CUI R H, LI FF, LI Y N, et al. AC arc-fault detection based on continuous wavelet tsallis singular entropy in airplane[J]. Electric Drive, 2020, 50(12):93-98(in Chinese). [13] 丁建立, 邹云开, 王静, 等. 基于深度学习的ADS-B异常数据检测模型[J]. 航空学报, 2019, 40(12):323220. DING J L, ZOU Y K, WANG J, et al. ADS-B anomaly data detection model based on deeplearning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):323220(in Chinese). [14] 罗鹏, 王布宏, 李腾耀. 基于BiGRU-SVDD的ADS-B异常数据检测模型[J]. 航空学报, 2020, 41(10):323878. LUO P, WANG B H, LI T Y. ADS-B anomaly data detection model based onBiGRU-SVDD[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):323878(in Chinese). [15] MOYA M, KOCH M, HOSTETLER L. One-class classifier networks for target recognition applications:SAND-93-0084C[R]. Washington, D.C.:NASA, 1993:797-801. [16] TAX D M J. One-class classification[D]. Delft:Delft University of Technology, 2001. [17] COHEN G,HILARIO M, SAX H, et al. An application of one-class support vector machine to nosocomial infection detection[J]. Studies in Health Technology and Informatics, 2004, 107(Pt 1):716-720. [18] TAX D M J, MULLER K R. A consistency-based model selection for one-class classification[C]//Proceedings of the 17th International Conference on Pattern Recognition. Piscataway:IEEE Press, 2004:363-366. [19] 戴海发, 卞鸿巍, 马恒, 等. 基于一类SVM的综合导航系统信息故障检测方法[J]. 中国惯性技术学报, 2017, 25(4):555-560. DAI H F, BIAN H W, MA H, et al. Information fault detection for integrated navigation systems using one-class support vectormachine[J]. Journal of Chinese Inertial Technology, 2017, 25(4):555-560(in Chinese). [20] TAX D M J, DUIN R P W. Support vector data description[J]. MachineLearning, 2004, 54(1):45-66. [21] MANSOURI M, NOUNOU M, NOUNOU H, et al. Kernel PCA-based GLRT for nonlinear fault detection of chemical processes[J]. Journal of Loss Prevention in the Process Industries, 2016, 40:334-347. [22] IOSIFIDIS A, MYGDALIS V, TEFAS A, et al. One-class classification based on extreme learning and geometric class information[J]. Neural Processing Letters, 2017, 45(2):577-592. [23] LENG Q, QI H G, MIAO J, et al. One-class classification with extreme learning machine[J]. Mathematical Problems in Engineering, 2015, 2015:1-11. [24] GAUTAM C, TIWARI A, LENG Q. On the construction of extreme learning machine for online and offline one-class classification-An expanded toolbox[J]. Neurocomputing, 2017, 261:126-143. [25] 朱敏, 刘奇, 刘星, 等. 基于LMKL和OC-ELM的航空电子部件故障检测方法[J]. 系统工程与电子技术, 2020, 42(6):1424-1432. ZHU M, LIU Q, LIU X, et al. Fault detection method for avionics based on LMKL and OC-ELM[J]. Systems Engineering and Electronics, 2020, 42(6):1424-1432(in Chinese). [26] GUO L, HAO J H, LIU M. An incremental extreme learning machine for online sequential learning problems[J]. Neurocomputing, 2014, 128:50-58. [27] SCARDAPANE S, COMMINIELLO D, SCARPINITI M, et al. Onlinesequential extreme learning machine with kernels[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9):2214-2220. [28] 朱敏, 许爱强, 陈强强, 等. 一种基于改进KELM的在线状态预测方法[J]. 北京航空航天大学学报, 2019, 45(7):1370-1379. ZHU M, XU A Q, CHEN QQ, et al. An improved KELM based online condition prediction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7):1370-1379(in Chinese). [29] 张英堂, 马超, 李志宁, 等. 基于快速留一交叉验证的核极限学习机在线建模[J]. 上海交通大学学报, 2014, 48(5):641-646. ZHANG Y T, MA C, LI Z N, et al. Online modeling of kernel extreme learning machine based on fast leave-one-out cross-validation[J]. Journal of Shanghai Jiao Tong University, 2014, 48(5):641-646(in Chinese). [30] DAI J L, XU A Q, LIU X, et al. Onlinesequential model for multivariate time series prediction with adaptive forgetting factor[J]. IEEE Access, 2020, 8:175958-175971. [31] TAX D M J. DDtools, the data description toolbox for Matlab[EB/OL].(2013-07-24)[2020-12-10]. http://prlab.tudeft.nl/david-tax/dd_tools.html. |