[1] SHIAH A, HWANG K S, WU S T, et al. Three-dimensional simulation of current collection in space[J]. Planetary and Space Science, 1997, 45(4):475-482.[2] PARDINI C, HANADA T, KRISKO P H. Benefits and risks of using electrodynamic tethers to de-orbit spacecraft[J]. Acta Astronautica, 2009, 64(5):571-588.[3] HOYT R P. Stabilization of electrodynamic tethers[C]//Proceedings of 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, VA:AIAA, 2002:1-8.[4] 蔡洪, 杨育伟, 郭才发. 电动力绳系研究进展[J]. 宇航学报, 2014, 35(11):1223-1232. CAI H, YANG Y W, GUO C F. Review of electrodynamic tether system[J]. Journal of Astronautics, 2014, 35(11):1223-1232(in Chinese).[5] SOMENZI L, IESS L, PELAEZ J. Linear stability analysis of electrodynamic tethers[J]. Journal of Guidance, Control, & Dynamics, 2012, 28(5):843-849.[6] ZHONG R, ZHU Z H. Dynamics of nanosatellite deorbit by bare electrodynamic tether in low earth orbit[J]. Journal of Spacecraft & Rockets, 2015, 50(3):691-700.[7] LI G Q, ZHU Z H, Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration[J]. Celestial Mechanics & Dynamical Astronomy, 2015, 123(4):363-386.[8] 潘伟, 路长厚, 李吉栋, 等. 基于傅里叶展开的电动力绳系卫星最优控制[J]. 航空学报, 2011, 32(9):1714-1721. PAN W, LU C H, LI J D, et al. Optimal control of electrodynamic tethered satellites based on Fourier series expansion[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1714-1721(in Chinese).[9] RUPP C C. A tether tension control law for tethered subsatellites deployed along local vertical:NASA-TM-X-64963[R]. Wahsington, D.C.:NASA, 1975, 1-28.[10] SUN G H, ZHU Z H. Fractional-order tension control law for deployment of space tether system[J]. Journal of Guidance, Control, & Dynamics, 2014, 37(6):2062-2066.[11] STEINDL A, TROGER H. Optimal control of deployment of a tethered subsatellite[J]. Nonlinear Dynamics, 2003, 31(3):257-274.[12] WILLIAMS P. Optimal deployment/retrieval of tethered satellites[J]. Journal of Spacecraft & Rockets, 2008, 45(2):324-343.[13] WEN H, ZHU Z H, JIN D P, et al. Space tether deployment control with explicit tension constraint and saturation function[J]. Journal of Guidance, Control, & Dynamics, 2016, 39(4):915-920.[14] STEINDL A, Optimal control of the deployment (and retrieval) of a tethered satellite under small initial disturbances[J]. Meccanica, 2014, 49(8):1879-1885.[15] KUMAR K, PRADEEP S. Strategies for three dimensional deployment of tethered satellites[J]. Mechanics Research Communications, 1998, 25(5):543-550.[16] WEN H, JIN D, HU H. Three-dimensional deployment of electro-dynamic tether via tension and current control with constraints[J]. Acta Astronautica, 2016, 129:253-259.[17] VALLADO D A. Fundamental of astrodynamics and applications[M].New York:Microcosm Press, 2007:103-117.[18] WILLIAMS P. Libration control of electrodynamic tethers using predictive control with time-delayed feedback[J]. Journal of Guidance, Control, & Dynamics, 2015, 32(4):1254-1268.[19] POLYCARPOU M M, IOANNOU P A. A robust adaptive nonlinear control design[J], Automatica, 1996, 32(3):423-427.[20] SLOTINE J J E, LI W. Applied nonlinear control[M]. Beijing:China Machine Press, 2004:121-155.[21] 黄静, 李传江, 马广富, 等. 基于广义逆的欠驱动航天器姿态机动控制[J]. 自动化学报, 2013, 39(3):285-292. HUANG J, LI C J, MA G F, et al. Generalised inversion based maneuver attitude control for underactuated spacecraft[J]. Acta Automatica Sinica, 2013, 39(3):285-292(in Chinese). |