[1] 冯霞, 徐冰宇, 卢敏. 民航旅客订票行为细分及群体特征分析[J]. 计算机工程与设计, 2015, 36(8):2217-2222. FENG X, XU B Y, LU M. Booking behavior subdivision and characteristic analysis of civil aviation passenger[J]. Computer Engineering and Design, 2015, 36(8):2217-2222(in Chinese).[2] 潘玲玲. 基于旅客行为的航空旅客细分模型研究及其实现[D]. 南京:南京航空航天大学, 2012:1-57. PANG L L. The research and realization of civil aviation customer segmentation based on customer behavior[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:1-57(in Chinese).[3] 林友芳, 王琨琨, 周超, 等. 基于社交网络的民航旅客偏好建模[J]. 北京交通大学学报, 2014, 38(6):33-39 LIN Y F, WANG K K, ZHOU C, et al. Modeling the preference of air passengers based on social network[J]. Journal of Beijing Jiaotong University, 2014, 38(6):33-39(in Chinese).[4] 王坤坤. 民航旅客座位偏好建模与应用研究[D]. 北京:北京交通大学, 2015:1-48. WANG K K. Research of modeling the seat preference of civil aviation passengers and its applications[D]. Beijing:Beijing Jiaotong University, 2015:1-48(in Chinese).[5] 曹卫东, 白亮, 聂笑盈. 基于Map/Reduce的民航高价值旅客发现方法[J]. 计算机工程与设计, 2015, 36(4):1078-1083. CAO W D, BAI L, NIE X Y. Method of discovering high-value passengers of civil aviation based on map/reduce[J]. Computer Engineering and Design, 2015, 36(4):1078-1083(in Chinese).[6] FENG X, XU B Y, MIN L, et al. Potential high-value passengers discovery by random walk on passenger-route heterogeneous network[J]. Journal of Computational & Theoretical Nanoscience, 2015, 12(8):1568-1593.[7] 韩敏. 基于社会网络的民航旅客价值排序算法研究与实现[D]. 北京:北京交通大学, 2014:22-38. HAN M. The research and implementation on ranking the aviation passengers' values based on social network[D]. Beijing:Beijing Jiaotong University, 2014:22-38(in Chinese).[8] 冯霞, 李勇, 陈卉敏. 民航旅客社会网络构建方法研究[J].计算机仿真, 2013, 30(6):51-54, 142. FENG X, LI Y, CHEN H M. Research on constructing social network of airline customers from data of PNR[J]. Computer Simulation, 2013, 30(6):51-54,142(in Chinese).[9] HAVELIWALA T H. Topic-sensitive PageRank[C]//International Conference on World Wide Web, 2002:517-526.[10] KAMVAR S D, HAVELIWALA T H, MANNING C D, et al. Exploiting the block structure of the web for computing PageRank[R]. Palo Alto, San Francisco:Stanford University Technical Report, 2003:1-13.[11] YANG Z, TANG J, ZHANG J, et al. Topic-level random walk through probabilistic model[M]//Advances in Data and Web Management. Berlin:Springer Berlin Heidelberg, 2009:162-173.[12] 朱凡微, 吴明晖, 应晶. 高效个性化PageRank算法综述[J]. 中国科技论文, 2012, 7(1):7-13. ZHU F W, WU M H, YING J. Efficient personalized PageRank computation:A survey[J]. China Sciencepaper, 2012, 7(1):7-13(in Chinese).[13] ZHU F W, FANG Y, CHANG C C, et al. Scheduled approximation for personalized PageRank with utility-based hub selection[J]. The VLDB Journal, 2015, 24(5):1-25.[14] WEI W, GAO B, LIU T Y, et al. A ranking approach on large-scale graph with multidimensional heterogeneous information[J]. IEEE Transactions on Cybernetics, 2016, 46(4):930.[15] WAN X, XIAO J. Single document keyphrase extraction using neighborhood knowledge[C]//National Conference on Artificial Intelligence, 2008:855-860.[16] LI D, LI S, LI W, et al. A semi-supervised key phrase extraction approach:learning from title phrases through a document semantic network[C]//Proceedings of the, Meeting of the Association for Computational Linguistics, 2010:296-300.[17] SIDDIQI S, SHARAN A. Keyword and keyphrase extraction techniques:A literature review[J]. International Journal of Computer Applications, 2015, 109(2):18-23.[18] MIHALCEA R, TARAU P. TextRank:Bringing order into texts[J]. Unt Scholarly Works, 2004:404-411.[19] AMJAD T, DING Y, DAUD A, et al. Topic-based heterogeneous rank[J]. Scientometrics, 2015, 104(1):1-22.[20] DING Y. Topic-based PageRank on author cocitation networks[J]. Journal of the Association for Information Science and Technology, 2011, 62(3):449-466. |