[1] ENGQUIST B, OSHER S. Stable and entropy satisfying approximations for transonic flow calculations[J]. Mathematics of Computation, 1980, 34(149):45-57.
[2] ENGQUIST B, OSHER S. One sided difference approximation for nonlinear conservation laws[J]. Mathematics of Computation, 1981, 36(154):321-351.
[3] OSHER S, SOLOMON F. Upwind difference schemes for hyperbolic systems of conservation laws[J]. Mathematics of Computation, 1982, 38(158):339-374.
[4] OSHER S, CHAKRAVARTHY S. Upwind schemes and boundary conditions with application to Euler equations in general geometries[J]. Journal of Computational Physics, 1983, 50(3):447-481.
[5] CHAKRAVARTHY S, OSHER S. Numerical experiments with the Osher upwind scheme for the Euler equations[J]. AIAA Journal, 1983, 21(9):1241-1248.
[6] OSHER S. Riemann solvers, the entropy condition, and difference approximations[J]. SIAM Journal on Numerical Analysis, 1984, 21(2):217-235.
[7] OSHER S, CHAKRAVARTHY S. High resolution schemes and the entropy condition[J]. SIAM Journal on Numerical Analysis, 1984, 21(5):955-984.
[8] AMALADAS J R, KAMATH H. Accuracy assessment of upwind algorithms for steady-state computations[J]. Computers & Fluids, 1998, 27(8):941-962.
[9] SANDERS R, MORANO E, DRUGUET M. Multidimensional dissipation for upwind schemes:Stability and applications to gas dynamics[J]. Journal of Computational Physics, 1998, 145(2):511-537.
[10] PANDOLFI M, D'AMBROSIO D. Numerical instabilities in upwind methods:Analysis and cures for the "carbuncle" phenomenon[J]. Journal of Computational Physics, 2001, 166(2):271-301.
[11] REN Y X. A robust shock-capturing scheme based on rotated Riemann solvers[J]. Computers & Fluids, 2003, 32(10):1379-1403.
[12] ZHU H J, DENG X G, MAO M L, et al. Osher flux with entropy fix for two-dimensional Euler equations[J]. The Advances in Applied Mathematics and Mechanics, 2016, 8(4):670-692.
[13] DENG X G, MAO M L. Weighted compact high-order nonlinear schemes for the Euler equations:AIAA-1997-1941[R]. Reston:AIAA, 1997.
[14] DENG X G, MAO M L. New high-order hybrid cell-edge and cell-node weighted compact nonlinear schemes:AIAA-2011-3857[R]. Reston:AIAA, 2011.
[15] DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4):1100-1115.
[16] DENG X G, MIN Y B, MAO M L, et al. Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239:90-111.
[17] 燕振国, 刘化勇, 毛枚良, 等. 三阶HWCNS的构造及其在高超声速流动中的应用[J]. 航空学报, 2015, 36(5):1460-1470. YAN Z G, LIU H Y, MAO M L, et al. Development of 3rd-order HWCNS and its application in hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1460-1470 (in Chinese).
[18] 涂国华, 燕振国, 赵晓慧, 等. SA和SST湍流模型对高超声速边界层强制转捩的适应性[J]. 航空学报, 2015, 36(5):1471-1479. TU G H, YAN Z G, ZHAO X H, et al. SA and SST turbulence models for hypersonic forced boundary layer transition[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1471-1479 (in Chinese).
[19] 燕振国, 刘化勇, 毛枚良, 等. 基于高阶耗散紧致格式的GMRES方法收敛特性研究[J]. 航空学报, 2014, 35(5):1181-1192. YAN Z G, LIU H Y, MAO M L, et al. Convergence property investigation of GMRES method based on high-order dissipative compact scheme[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1181-1192 (in Chinese).
[20] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1):22-44.
[21] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. Journal of Computational Physics, 1988, 77(2):439-471.
[22] KITAMURA K, SHIMA E, NAKAMURA Y, et al. Evaluation of Euler fluxes for hypersonic heating computations[J]. AIAA Journal, 2010, 48(4):763-776.
[23] HARTEN A. On a class of high resolution total-variation-stable finite-difference schemes[J]. SIAM Journal of Numerical Analysis, 1984, 21(1):1-23.
[24] KITAMURA K. A further survey of shock capturing methods on hypersonic heating issues:AIAA-2013-2698[R]. Reston:AIAA, 2013.
[25] MA Y K, YAN Z G, ZHU H J. Improvement of multistep WENO scheme and its extension to higher orders of accuracy[J]. International Journal of Numerical Methods Fluids, 2016, 82(12):818-838.
[26] DELERY J M, PANARAS A G. Shock-wave/boundary-layer interactions in high-Mach-number flows:AGARD-AR-319[R]. 1996.
[27] MOSS J N, DOGRA V K, PRICE J M. DSMC simulations of viscous interactions for a hollow cylinder-flare configuration:AIAA-1994-2015[R]. Reston:AIAA, 1994.
[28] KIM K H, KIM C. Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part Ⅱ:Multi-dimensional limiting process[J]. Journal of Computational Physics, 2005, 208(2):570-615. |