[1] Guz À N, Chernyshenko I S, Chekhov V N, et al. Investigations in the theory of thin shells with openings[J]. International Applied Mechanics, 1979, 15(11):1015-1043.
[2] Zirka A I, Chernopiskii D I. Experimental investigation of the stress concentration in axially compressed thick cylindrical shells with rectangular holes[J]. International Applied Mechanics, 2001, 37(5):689-691.
[3] Shariati M, Rokhi M M. Numerical and experimental investigations on buckling of steel cylindrical shells with elliptical cutout subject to axial compression[J]. Thin-WalledStructures, 2008, 46(11):1251-1261.
[4] Zhang W H, Wang D, Yang J G. A parametric mapping method for curve shape optimization on 3D panel structures[J]. International Journal for Numerical Methods in Engineering, 2010, 84(4):485-504.
[5] Zhang M M, Wang D, Zhang W H. Buckling analysis and shape optimization of cylinder shells with holes under axial compression[J]. Science Technology and Engineering, 2011, 11(9):1671-1815(in Chinese).张苗苗,王丹,张卫红.带孔圆柱壳轴压屈曲与孔形优化设计[J].科学技术与工程, 2011, 11(9):1671-1815.
[6] Hu H T, Ou S C. Maximization of the fundamental frequencies of laminated truncated conical shells with respect to fiber orientations[J]. Composite Structures, 2001, 52(3-4):265-275.
[7] Wu Z X. Optimal hole shape for minimum stress concentration using parameterized geometry models[J]. Structural and Multidisciplinary Optimization, 2009, 37(6):625-634.
[8] Pedersen N L. Optimization of holes in plates for control of eigenfrequencies[J]. Structural and Multidisciplinary Optimization, 2004, 28(1):1-10.
[9] Wang D, Zhong X J, Yu Z G. Effects of a cutout inside a rectangular plate on the plate dynamics[J]. Noise and Vibration Control, 2009(6):53-57(in Chinese).王栋,钟习建,禹志刚.开孔对矩形板动力性能影响分析[J].噪声与振动控制, 2009(6):53-57.
[10] Wang G G, Shan S. Review of meta-modeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(2):370-380.
[11] Wang G G. Adaptive response surface method using inherited Latin hypercube design points[J]. Journal of Mechanical Design, 2003, 125(2):210-220.
[12] Lee Y B, Jung S H, Choi D H. Progressive quadratic response surface modeling using inherited Latin-hypercube design[C]//Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2006:7092.
[13] Wang C E, Huang Z J. Kriging response surface method based on Gauss function and trust region update approach[J]. Computer Integrated Manufacturing Systems, 2011, 17(4):740-746(in Chinese).王成恩,黄章俊.基于高斯函数和信赖域更新策略的Kriging响应面法[J].计算机集成制造系统, 2011, 17(4):740-746.
[14] Li D Y, Peng Y H, Yin J L. Optimization of metal-forming process via a hybrid intelligent optimization technique[J]. Structural and Multidisciplinary Optimization, 2007, 34:229-241.
[15] Sun G Y, Li G Y, Zhong Z H, et al. Optimization design of multi-objective particle swarm in crashworthiness based on sequential response surface method[J]. Journal of Mechanical Engineering, 2009, 45(2):224-230(in Chinese).孙光永,李光耀,钟志华,等.基于序列响应面法的汽车结构耐撞性多目标粒子群优化设计[J].机械工程学报,2009, 45(2):224-230.
[16] Pajunen S, Heinonen O. Automatic design of marine structures by using successive response surface method[J]. Structural and Multidisciplinary Optimization, 2014, 49(5):863-871.
[17] Fang K T, Ma C X. Orthogonal and uniform experimental design[M]. Beijing:Science Press, 2001:83-106(in Chinese).方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社, 2001:83-106.
[18] Simpson T W, Lin D K J, Chen W. Sampling strategies for computer experiments:Design and analysis[J]. International Journal of Reliability and Applications, 2003, 2(3):209-240.
[19] Redhe M, Forsberg J, Jansson T, et al. Using the response surface methodology and the D-optimality criterion in crashworthiness related problems[J]. Structural and Multidisciplinary Optimization, 2002, 24(3):185-194.
[20] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. |