航空学报 > 2013, Vol. 34 Issue (1): 121-129   doi: 10.7527/S1000-6893.2013.0015

半球谐振陀螺仪谐振子品质因数不均匀引起的误差分析

李巍, 任顺清, 王常虹   

  1. 哈尔滨工业大学 空间控制与惯性技术研究中心, 黑龙江 哈尔滨 150001
  • 收稿日期:2012-01-16 修回日期:2012-03-19 出版日期:2013-01-25 发布日期:2013-01-19
  • 通讯作者: 任顺清,Tel.:0451-86402351,E-mail:renshq@yahoo.com.cn E-mail:renshq@yahoo.com.cn
  • 作者简介:李巍,男,博士研究生。主要研究方向:惯性技术、控制理论。Tel:0451-86402351,E-mail:leenwei901@163.com;任顺清,男,博士,教授,博士生导师。主要研究方向:惯性技术、精密测试技术。Tel:0451-86402351,E-mail:renshq@yahoo.com.cn
  • 基金资助:

    十一·五预研项目(51309050601)

Analysis for Impact of Resonator’s Q-factor Nonuniformity on the Error of Hemispherical Resonator Gyro

LI Wei, REN Shunqing, WANG Changhong   

  1. Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China
  • Received:2012-01-16 Revised:2012-03-19 Online:2013-01-25 Published:2013-01-19
  • Supported by:

    National Defense Advanced Research Project (51309050601)

摘要:

半球谐振子的品质因数不均匀性是造成陀螺仪输出误差的一个主要误差源,所以研究在参数激励以及位置激励两种模式下,谐振子品质因数不均匀对于陀螺仪输出误差的影响具有一定的理论意义。在引入半球谐振子的环形振动模型的基础上,首先考虑参数激励方式下,品质因数不均匀引起的进动角速率误差的表达式,仿真分析了不均匀性四次谐波对陀螺仪漂移角度的贡献,结果表明漂移角度为具有趋势项的振动曲线。然后在位置激励方式下,通过开环和闭环两种模式分别研究了品质因数不均匀的四次谐波对于输入角速率解算的影响,得出了当位置激励对准固有韧性轴时,解算的误差能够得到抑制的结论。总之,在两种激励方式下,品质因数的四次谐波分量都会导致陀螺仪出现输出误差。

关键词: 陀螺仪, 半球谐振子, 品质因数, 参数激励, 位置激励

Abstract:

A resonator’s Q-factor nonuniformity is one of the main error sources of a hemispherical resonator gyro (HRG). Therefore, it is of theoretical importance to study the influence of Q-factor nonuniformity about the circumferential angle on the output angular rate error under both positional and the parametric exciting modes. Based on the introduction of a ring-shaped dynamic equation of hemispherical resonator, the expression for a gyro’s precession error is derived, and the influence of Q-factor nonuniformity on drift angle is computed through simulation calculation. The drift angle curve is found to be an oscillating curve with a ramp trend term under the parametric exciting mode. The influence of Q-factor nonuniformity on the solution error of input angular rate is also computed through simulation under both the open-loop mode and the closed-loop mode. It is proved that the solution error will be restrained when the excitation electrode aligns with the resonator’s inherent toughness axis under the positional exciting mode. In summary, the 4th harmonic component of resonator’s Q-factor nonuniformity will bring about output errors under whatever exciting modes.

Key words: gyro, hemispherical resonator, Q-factor, parametric exciting mode, position exciting mode

中图分类号: