1 |
万逸飞, 彭力. 基于协同多目标算法的多机器人路径规划[J]. 信息与控制, 2020, 49(2): 139-146.
|
|
WAN Y F, PENG L. Multi-robot path planning based on cooperative multi-objective algorithm[J]. Information and Control, 2020, 49(2): 139-146 (in Chinese).
|
2 |
晁永生, 孙文磊. 动态修改路径的多机器人路径规划[J]. 机械科学与技术, 2018, 37(10): 1483-1488.
|
|
CHAO Y S, SUN W L. Dynamic path modification for multi-robot path planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(10): 1483-1488 (in Chinese).
|
3 |
曹其新, 黄先群, 朱笑笑, 等. 基于保留区域的分布式多机器人路径规划[J]. 华中科技大学学报(自然科学版), 2018, 46(12): 71-76.
|
|
CAO Q X, HUANG X Q, ZHU X X, et al. Distributed multi-robot path planning based on reserved area[J] Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(12):71-76 (in Chinese).
|
4 |
OROZCO-ROSAS U, MONTIEL O, SEPÚLVEDA R. Mobile robot path planning using membrane evolutionary artificial potential field[J]. Applied Soft Computing, 2019, 77: 236-251.
|
5 |
BHATTACHARYA P, GAVRILOVA M L. Roadmap-based path planning-using the Voronoi diagram for a clearance-based shortest path[J]. IEEE Robotics & Automation Magazine, 2008, 15(2): 58-66.
|
6 |
胡章芳, 冯淳一, 罗元. 改进粒子群优化算法的移动机器人路径规划[J]. 计算机应用研究, 2021, 38(10): 3089-3092.
|
|
HU Z F, FENG C Y, LUO Y. Improved particle swarm optimization algorithm for mobile robot path planning[J]. Application Research of Computers, 2021, 38(10): 3089-3092 (in Chinese).
|
7 |
蒋强, 易春林, 张伟, 等. 基于蚁群算法的移动机器人多目标路径规划[J]. 计算机仿真, 2021, 38(2): 318-325.
|
|
JIANG Q, YI C L, ZHANG W, et al. The multi-objective path planning for mobile robot based on ant colony algorithm[J]. Computer Simulation, 2021, 38(2): 318-325 (in Chinese).
|
8 |
LIU C, LIU H, YANG J. A path planning method based on adaptive genetic algorithm for mobile robot[J]. Journal of Information & Computational Science, 2011, 8(5): 808-814.
|
9 |
SHARON G, STERN R, FELNER A, et al. Conflict-based search for optimal multi-agent pathfinding[J]. Artificial Intelligence, 2015, 219: 40-66.
|
10 |
MA H, LI J Y, KUMAR T K S, et al. Lifelong multiagent path finding for online pickup and delivery tasks[C]∥ Proceedings of the 16th Conference on Autonomous Agents and Multi-Agent Systems, 2017: 837-845.
|
11 |
MA H, YANG J, COHEN L, et al. Feasibility study: moving non-homogeneous teams in congested video game environments[C]∥ Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 2017, 13(1): 270-272.
|
12 |
HÖNIG W, PREISS J A, KUMAR T K S, et al. Trajectory planning for quadrotor swarms[J]. IEEE Transactions on Robotics, 2018, 34(4): 856-869.
|
13 |
BARER M, SHARON G, STERN R Z, et al. Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem[C]∥ Proceedings of the 7th Annual Symposium on Combinatorial Search, 2014: 19-27.
|
14 |
COHEN L, KOENIG S. Bounded suboptimal multi-agent path finding using highways[C]∥ Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016: 978-3979.
|
15 |
BOYARSKI E, FELNER A, STERN R, et al. ICBS: Improved conflict-based search algorithm for multi-agent pathfinding[C]∥ Proceedings of the 24th International Conference on Artificial Intelligence, 2015: 740-746.
|
16 |
FELNER A, LI J, BOYARSKI E, et al. Adding heuristics to conflict-based search for multi-agent path finding[C]∥ Proceedings of the International Conference on Automated Planning and Scheduling, 2018, 28: 83-87.
|
17 |
LI J, FELNER A, BOYARSKI E, et al. Improved heuristics for multi-agent path finding with conflict-based search[C]∥ Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 442-449.
|
18 |
LI J, HARABOR D, STUCKEY P J, et al. Symmetry-breaking constraints for grid-based multi-agent path finding[C]∥ Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 6087-6095.
|
19 |
COHEN L, WAGNER G, CHAN D, et al. Rapid randomized restarts for multi-agent path finding solvers[C]∥ Proceedings of Eleventh Annual Symposium on Combinatorial Search, 2018: 148-152.
|
20 |
FIORINI P, SHILLER Z. Motion planning in dynamic environments using velocity obstacles[J]. The International Journal of Robotics Research, 1998, 17(7): 760-772.
|
21 |
DURAND N, BARNIER N. Does ATM need centralized coordination? autonomous conflict resolution analysis in a constrained speed environment[J]. Air Traffic Control Quarterly, 2015, 23(4): 325-346.
|
22 |
杨秀霞,周硙硙,张毅.基于速度障碍圆弧法的UAV自主避障规划研究[J].系统工程与电子技术, 2017, 39(1): 168-176.
|
|
YANG X X, ZHOU W W, ZHANG Y. Automatic obstacle avoidance planning for UVA based on velocity obstacle arc method[J]. Systems Engineering and Electronics, 2017, 39(1): 168-176 (in Chinese).
|
23 |
DURAND N. Constant speed optimal reciprocal collision avoidance[J]. Transportation Research Part C: Emerging Technologies, 2018, 96: 366-379.
|