1 |
杨善初, 喻虹, 陆荣华, 等. X射线强度关联干涉测量能谱展宽校正[J]. 光学学报, 2019, 39(10): 395-402.
|
|
YANG S C, YU H, LU R H, et al. Energy spectrum broadening correction in X-ray interferometry via intensity correlation[J]. Acta Optica Sinica, 2019, 39(10): 395-402 (in Chinese).
|
2 |
ZHANG A X, HE Y H, WU L A, et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 2018, 5(4): 374.
|
3 |
韦震, 陆荣华, 喻虹, 等. 基于符合计数的极弱光强度关联干涉测量研究[J]. 光学学报, 2020, 40(1): 211-218.
|
|
WEI Z, LU R H, YU H, et al. Research on intensity-correlated interferometry with ultra-weak light based on coincidence counting[J]. Acta Optica Sinica, 2020, 40(1): 211-218 (in Chinese).
|
4 |
HAN S S, YU H, SHEN X, et al. A review of ghost imaging via sparsity constraints[J]. Applied Sciences, 2018, 8(8): 1379.
|
5 |
BROWN R H, TWISS R Q. Interferometry of the intensity fluctuations in light-I. Basic theory: The correlation between photons in coherent beams of radiation[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1957, 242(1230): 300-324.
|
6 |
HANBURY BROWN R, TWISS R Q. A test of a new type of stellar interferometer on Sirius[J]. Nature, 1956, 178(4541): 1046-1048.
|
7 |
DENG Z L, GAO Z F, LI X D, et al. On the formation of PSR J1640+2224: A neutron star born massive? [J]. The Astrophysical Journal Letters, 2020, 892(1): 4.
|
8 |
DENG Z L, LI X D, GAO Z F, et al. Evolution of LMXBs under different magnetic braking prescriptions[J]. The Astrophysical Journal Letters, 2021, 909(2): 174.
|
9 |
WANG H, GAO Z F, JIA H Y, et al. Estimation of electrical conductivity and magnetization parameter of neutron star crusts and applied to the high-braking-index pulsar PSR J1640-4631[J]. Universe, 2020, 6(5): 63.
|
10 |
GAO Z F, SHAN H, WANG W, et al. Reinvestigation of the electron fraction and electron Fermi energy of neutron star[J]. Astronomische Nachrichten, 2017, 338(9-10): 1066-1072.
|
11 |
GAO Z F, WANG N, YUAN J P, et al. Evolution of superhigh magnetic fields of magnetars[J]. Astrophysics and Space Science, 2011, 333(2): 427-435.
|
12 |
YAN F Z, GAO Z F, YANG W S, et al. Explaining high braking indices of magnetars SGR 0501+4516 and 1E 2259+586 using the double magnetic-dipole model[J]. Astronomische Nachrichten, 2021, 342(1-2): 249-254.
|
13 |
韩春杨, 徐振邦, 吴清文, 等. 大型光学载荷次镜调整机构优化设计及误差分配[J]. 光学 精密工程, 2016, 24(5): 1093-1103.
|
|
HAN C Y, XU Z B, WU Q W, et al. Optimization design and error distribution for secondary mirror adjusting mechanism of large optical payload[J]. Optics and Precision Engineering, 2016, 24(5): 1093-1103 (in Chinese).
|
14 |
THOME K, GUBBELS T, BARNES R. Preliminary error budget for the reflected solar instrument for the Climate Absolute Radiance and Refractivity Observatory[C]∥ SPIE Optical Engineering + Applications. Proc SPIE 8153, Earth Observing Systems XVI, 2011: 281-289.
|
15 |
GORENSTEIN P. Focusing X-ray optics for astronomy[J]. X-Ray Optics and Instrumentation, 2010, 2010: 109740.
|
16 |
李海亮, 史丽娜, 牛洁斌, 等. 大高宽比硬X射线波带片制作及聚焦测试[J]. 光学 精密工程, 2017, 25(11): 2803-2809.
|
|
LI H L, SHI L N, NIU J B, et al. Fabrication and focusing test of hard X-ray zone plates with high aspect ratio[J]. Optics and Precision Engineering, 2017, 25(11): 2803-2809 (in Chinese).
|
17 |
GIACCONI R. History of X-ray telescopes and astronomy[J]. Experimental Astronomy, 2009, 25(1-3): 143-156.
|
18 |
AWAKI H, OGASAKA Y, KUNIEDA H, et al. Current status of the Astro-H X-ray Telescope system[C]∥ SPIE Optical Engineering + Applications. Proc SPIE 7437, Optics for EUV, X-Ray, and Gamma-Ray Astronomy IV, 2009: 28-35.
|
19 |
FRIEDRICH P, BRÄUNINGER H, BUDAU B,et al. Development and testing of the eROSITA mirror modules[C]∥ SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, 2012: 508-515.
|
20 |
BAUMGARTNER W H, RAMSEY B, THOMAS N, et al. Ground calibration of the IXPE optics and telescope[C]∥SPIE Optical Engineering + Applications. Proc SPIE 11821, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, 2021: 118210N.
|
21 |
赵大春. 软X射线掠入射集光系统设计及加工技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016: 43-92.
|
|
ZHAO D C. Design and fabrication technology on soft X-ray grazing incidence concentrators[D]. Changchun: Institute of Physics, Chinese Academy of Sciences, 2016: 43-92 (in Chinese).
|
22 |
SHEN Z X, YU J, MA B, et al. Current progress of X-ray multilayer telescope optics based on thermally slumping glass for eXTP mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018: 269-280.
|
23 |
强鹏飞, 盛立志, 李林森, 等. X射线聚焦望远镜光学设计[J]. 物理学报, 2019, 68(16): 158-163.
|
|
QIANG P F, SHENG L Z, LI L S, et al. Optical design of X-ray focusing telescope[J]. Acta Physica Sinica, 2019, 68(16): 158-163 (in Chinese).
|
24 |
孔繁星. 超精密芯轴制造及Wolter-Ⅰ型极紫外光学收集镜复制工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 50-88.
|
|
KONG F X. Replication process research on ultra-precision mandrel manufacturing wolter-Ⅰ extreme ultraviolet collector optics[D]. Harbin: Harbin Institute of Technology, 2018: 50-88 (in Chinese).
|
25 |
ZUO F C, MEI Z W, MA T, et al. Design and development of grazing incidence X-ray mirrors[C]∥ Proc SPIE 9796, Selected Papers of the Photoelectronic Technology Committee Conferences Held November, 2015: 442-447.
|
26 |
左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报, 2020, 69(3): 030702.
|
|
ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica, 2020, 69(3): 030702 (in Chinese).
|
27 |
WEISSKOPF M C. Design of grazing-incidence X-ray telescopes. 1[J]. Applied Optics, 1973, 12(7): 1436-1439.
|
28 |
VERNANI D. advanced manufacturing techniques for X-ray and VHE Gamma-ray astronomical mirrors[D]. Varese: University of Insubria, 2011: 30-68.
|
29 |
ZUO F C, LI L S, MEI Z W, et al. Precision polishing of the mandrel for X-ray grazing incidence mirrors[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118(1-2): 43-53.
|