钱战森1,2
收稿日期:
2019-10-14
修回日期:
2020-01-20
出版日期:
2020-07-15
发布日期:
2020-02-13
通讯作者:
钱战森
E-mail:qianzs@avicari.com.cn
基金资助:
QIAN Zhansen1,2
Received:
2019-10-14
Revised:
2020-01-20
Online:
2020-07-15
Published:
2020-02-13
Supported by:
摘要: 综述了Godunov型显式大时间步长格式的研究进展。首先介绍了显式大时间步长格式的概念、分类和优势。然后重点阐述了Godunov型显式大时间步长格式的构造方法、高阶精度推广方法、多维问题推广方法和收敛特性、分辨率及计算效率等性能,展示了其在典型问题中的应用和验证。最后给出了Godunov型显式大时间步长格式研究进一步可能的发展方向。
中图分类号:
钱战森. Godunov型显式大时间步长格式研究进展[J]. 航空学报, 2020, 41(7): 23575-023575.
QIAN Zhansen. Research progress of Godunov type explicit large time step scheme[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 23575-023575.
[1] | 朱自强. 应用计算流体力学[M]. 北京:北京航空航天大学出版社, 1998. ZHU Z Q. Applied computational fluid dynamics[M]. Beijing:Beihang University Press, 1998(in Chinese). |
[2] | 傅德薰, 马延文. 计算流体力学[M]. 北京:高等教育出版社, 2002. FU D X, MA Y W. Computational fluid dynamics[M]. Beijing:High Education Press, 2002(in Chinese). |
[3] | 吴子牛. 计算流体力学基本原理[M]. 北京:科学出版社, 2002. WU Z N. Basic principles of computational fluid dynamics[M]. Beijing:Science Press, 2002(in Chinese). |
[4] | 张涵信, 沈孟育. 计算流体力学——差分方法的原理和应用[M]. 北京:国防工业出版社, 2003. ZHANG H X, SHEN M Y. Computational fluid dynamics——Theory and application of finite difference method[M]. Beijing:National Defense Industry Press, 2003(in Chinese). |
[5] | 任玉新, 陈海昕. 计算流体力学基础[M]. 北京:清华大学出版社, 2006. REN Y X, CHEN H X. Foundations of computational fluid dynamics[M]. Beijing:Tsinghua University Press, 2006(in Chinese). |
[6] | 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006. YAN C. Computational fluid dynamics methods and its application[M]. Beijing:Beihang University Press, 2006(in Chinese). |
[7] | ROACHE P J. Computational fluid dynamics[M]. Socorro:Hermosa Publisher, 1972. |
[8] | FLECTCHER C A J. Computational techniques for fluid dynamics[M]. New York:Spring-Verlag, 1988. |
[9] | ANDERSON J D. Computational fluid dynamics:Basics with applications[M]. New York:McGraw-Hill, 1995. |
[10] | PEYRET R. Handbook of computational fluid mechanics[M]. Pittsburgh:Academic Press, 1996. |
[11] | TORO E F. Riemann solvers and numerical methods for fluid dynamics:A practical introduction[M]. Berlin:Springer, 1997. |
[12] | LEVEQUE R J. Finite volume methods for hyperbolic problems[M]. Combridge:Combridge University Press, 2002. |
[13] | 黄志澄. 高超声速飞行器空气动力学[M]. 北京:国防工业出版社, 1995. HUANG Z C. Hypersonic aircraft aerodynamics[M]. Beijing:National Defense Industry Press, 1995(in Chinese). |
[14] | 张兆顺, 崔桂香, 许晓春. 湍流理论与模拟[M]. 北京:清华大学出版社, 2005. ZHANG Z S, CUI G X, XU C X. Turbulence theory and simulation[M]. Beijing:Tsinghua University Press, 2005(in Chinese). |
[15] | SCHETZ J A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 53(2):371-414. |
[16] | 郑晓静. 风沙运动的沙粒带电机理及其影响的研究进展[J]. 力学进展, 2004, 34(1):77-86. ZHENG X J. Advances in investigation on electrification of wind-blown sands and its effects[J]. Advances in Mechanics, 2004, 34(1):77-86(in Chinese). |
[17] | 李劲菁. 基于高阶熵条件格式的Euler方程与Navier-Stokes方程混合算法[D]. 北京:北京航空航天大学, 2002. LI J J. On the hybrid algorithm of Euler and Navier-Stokes equations based on high-order entropy condition scheme[D]. Beijing:Beihang Univeristy, 2002(in Chinese). |
[18] | THOMAS J W. Numerical partial differential equations[M]. New York:Springer-Verlag, 1995. |
[19] | CROCCO L. A suggestion for the numerical solution of the steady Navier-Stokes equations[J]. AIAA Journal, 1965, 3(10):1824-1832. |
[20] | MORETTI G, ABBETT M. A time-dependent computational method for blunt body flows[J]. AIAA Journal, 1966, 4(12):2136-2141. |
[21] | 水鸿寿. 一维流体力学差分方法[M]. 北京:国防工业出版社, 1998. SHUI H S. One dimensional fluid mechanics finite difference method[M]. Beijing:National Defense Industry Press, 1998(in Chinese). |
[22] | 沈荣华, 冯果忱. 微分方程数值解法[M]. 北京:人民教育出版社,1980. SHEN R H, FENG G C. Numerical methods of partial differential equation[M]. Beijing:People's Education Press, 1980(in Chinese). |
[23] | BEAM R M, WARMING R F. An implicit finite-difference algorithm for hyperbolic system in conservation law form[J]. Journal of Computational Physics, 1976, 22:87-109. |
[24] | MACCORMACK R W. A numerical method for solving the equations of compressible viscous flow:AIAA-1981-0110[R]. Reston:AIAA, 1981. |
[25] | PULLIAM T H, STEGER J L. Recent improvements in efficiency, accuracy, and convergence for implicit approximate factorization algorithms:AIAA-1985-0360[R]. Reston:AIAA,1985. |
[26] | PULLIAM T H, CHAUSSEE D S. A diagonal form of an implicit approximate factorization algorithm[J]. Journal of Computational Physics, 1981, 39:347-363. |
[27] | YOON S, JAMESON A. Lower-upper symmetric Gauss-Sediel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9):1025-1026. |
[28] | LUO H, BAUM J D, LOHNER R. Matrix-free implicit method for compressible flow on unstructured grids[J]. Journal of Computational Physics, 1998,146:664-690. |
[29] | PUEYO A, ZINGG D W. Efficient Newton-Krylov solver for aerodynamic computations[J]. AIAA Journal, 1998, 36(11):1991-1997. |
[30] | JAMESON A. Time dependent caculations using multigrid with application to unsteady flows past airfoils and wings:AIAA-1991-1596[R]. Reston:AIAA, 1991. |
[31] | GODONUV S K. A finite difference method for the computation of discontinuous solutions of the equations of fluids dynamics[J]. Matematichestki Sbornik, 1959, 47(89):271-306(in Russian). |
[32] | BORIS J P, BOOK D L. Flux corrected transport Ⅰ. SHASTA, a fluid transport algorithm that works[J]. Journal of Computational Physics, 1973, 11:25-40. |
[33] | HARTEN A, ZWAS G. Self-adjusting hybrid schemes for shock computations[J]. Journal of Computational Physics, 1972, 9:568-583. |
[34] | HARTEN A. High resolution schemes for hypersonic conservation laws[J]. Journal of Computational Physics, 1983, 49:357-393. |
[35] | JAMESON A, SCHMIDT W, TURKEL E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes:AIAA-1981-1259[R]. Reston:AIAA, 1981. |
[36] | VAN LEER B. Towards the ultimate conservation difference scheme:Ⅱ. Monotonicity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14:361-370. |
[37] | VAN LEER B. Towards the ultimate conservation difference scheme:Ⅲ. Upstream-centered finite-difference schemes for ideal compressible flow[J]. Journal of Computational Physics, 1977, 23:263-275. |
[38] | VAN LEER B. Towards the ultimate conservation difference scheme:Ⅳ. A new approach to numerical convection[J]. Journal of Computational Physics, 1977, 23:276-299. |
[39] | VAN LEER B. Towards the ultimate conservation difference scheme:Ⅴ. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 3:101-136. |
[40] | COLLELA P, WOODWARD P. The piecewise parabolic method for gas-dynamical simulations[J]. Journal of Computational Physics, 1984, 54:264-289. |
[41] | HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high-order accurate essentially non-oscillatory schemes Ⅲ[J]. Journal of Computational Physics, 1987, 71:231-303. |
[42] | LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115:200-212. |
[43] | JIANG G, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126:208-228. |
[44] | LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103:16-42. |
[45] | FU D X, MA Y W. A high order accurate difference scheme for complex flow[J]. Journal of Computational Physics, 1997, 134:1-15. |
[46] | ADAMS N A, SHARIFF K. A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems[J]. Journal of Computational Physics, 1996, 127:27-51. |
[47] | DENG X G, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 1997, 130:77-91. |
[48] | DENG X G, ZHANG H X. Developing high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:22-44. |
[49] | PIROZZOLI S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J]. Journal of Computational Physics, 2002, 178:81-117. |
[50] | REN Y X, LIU M, ZHANG H X. A characteristic hyprid compact-WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2003, 192:365-386. |
[51] | YEE H C, SJOGREEN B. Nonlinear filtering in compact high order schemes for ideal and non-ideal MHD equations[J]. Journal of Scientific Computing, 2006, 27:507-521. |
[52] | YEE H C, SJOGREEN B. Development of low dissipative high order filter schemes for multiscale Navier-Stokes/MHD systems[J]. Journal of Computational Physics, 2007, 225:910-934. |
[53] | ZHANG S H, JIANG S F, SHU C W. Development of nonlinear weighted compact schemes with increasingly higher order accuracy[J]. Journal of Computational Physics, 2008, 227:7294-7321. |
[54] | ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-372. |
[55] | ENGGUIST B, OSHER S. One-side difference approximations for nonlinear conservation laws[J]. Mathematics of Computation, 1981, 36(154):321-351. |
[56] | OSHER S, SOLOMON F. Upwind difference schemes for hyperbolic conservation laws[J]. Mathematics of Computation, 1982, 38:339-374. |
[57] | HARTEN A, LAX P D, VON LEER B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J]. SIAM Review, 1983, 25(1):35-61. |
[58] | TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4:25-34. |
[59] | STEGER J L, WARMING B. Flux vector splitting of the inviscid gasdynamic equations with applications to finite difference methods[J]. Journal of Computational Physics, 1981, 40:263-293. |
[60] | VAN LEER B. Flux-vector splitting for the equations:NASA TR 82-30[R]. Washington, D.C.:NASA Langley Reaserch Center, 1982. |
[61] | LIOU M S, STEFFEN C J. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107:23-39. |
[62] | LIOU M S. A sequel to AUSM:AUSM+[J]. Journal of Computational Physics, 1996, 129:364-382. |
[63] | WADA Y, LIOU M S. An accurate and robust flux splitting scheme for shock and contact discontinuities[J]. SIAM Journal on Scientific and Statistical Computing, 1997, 18:633-657. |
[64] | LIOU M S. Mass flux schemes and connection to shock instability[J]. Journal of Computational Physics, 2000, 160:623-648. |
[65] | LIOU M S. Ten years in the making-AUSM family:AIAA-2001-2521[R]. Reston:AIAA, 2001. |
[66] | TATSUMI S, MARTINELLI L, JAMESON A. Design, implementation, and validation of flux limited schemes for the solution of the compressible Navier-Stokes equations:AIAA-1994-0647[R]. Reston:AIAA, 1994. |
[67] | 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2):143-165. ZHANG H X. Non-oscillation, non-free parameters dissipative finite difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2):143-165(in Chinese). |
[68] | 张涵信. 无波动、无自由参数、耗散的隐式差分格式[J]. 应用数学与力学, 1991, 12(1):97-100. ZHANG H X. Non-oscillation, non-free parameters and dissipation implicit finite difference scheme[J]. Applied Mathematics and Mechanics, 1991, 12(1):97-100(in Chinese). |
[69] | LAX P D, WENDROFF B. Difference schemes for hyperbolic equations with high order of accuracy[J]. Communications Pure and Applied Mathematics, 1964, 17:381-393. |
[70] | MACCORMACK R W. The effect of viscosity in hypervelocity impact cratering:AIAA-1969-0354[R]. Reston:AIAA, 1969. |
[71] | NESSYAHU H, TADMOR E. Non-oscillatory central differencing for hyperbolic conservation laws[J]. Journal of Computational Physics, 1990, 87:408-463 |
[72] | JIANG G S, LEVY D, LIN C T, et al. High-resolution nonoscillatory central schemes with nonstaggered grid for hyperbolic conservation laws[J]. SIAM Journal on Numerical Analysis, 1998, 35(6):2147-2168. |
[73] | LEVY D, PUPPO G, RUSSO G. Central WENO schemes for hyperbolic systems of conservation laws[J]. Mathematical Modelling and Numerical Aanalysis, 1999, 33(3):547-571. |
[74] | LEVY D, PUPPO G, RUSSO G. Compact central WENO schemes for multidimensional conservation laws[J]. SIAM Journal on Scientific Computing, 2000, 22(2):656-672. |
[75] | LAX P D. Hyperbolic systems of conservation laws[J]. Communications Pure and Applied Mathematics, 1960, 13:217-237. |
[76] | DAVIS S. A rotationally biased upwind difference scheme for the Euler equations[J]. Journal of Computational Physics, 1984, 56:65-92. |
[77] | REN Y X. A robust shock-capturing scheme based on rotated Riemann solvers[J]. Computers & Fluids, 2003, 32:1379-1403. |
[78] | HIROAKI N, KEIICHI K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers[J]. Journal of Computational Physics, 2008, 227:2560-2581. |
[79] | GHISLAIN T, PASCALIN T K, YVES B. An accurate shock-capturing scheme based on rotatedhybrid Riemann solver:AUFSRR scheme[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2016, 26(5):1310-1327. |
[80] | LEVEQUE R J. Large time-step shock capture techniques for scalar conservation laws[J]. SIAM Journal on Numerical Analysis, 1982, 19:1091-1109. |
[81] | LEVEQUE R J. Convergence of a large time step generalization of godunov's method for conservation laws[J]. Communications on Pure and Applied Mathematics, 1984, 37(4):463-477. |
[82] | LEVEQUE R J. A large time step generalization of Godunov's method for systems of conservation laws[J]. SIAM Journal on Numerical Analysis, 1985, 22(6):1051-1073. |
[83] | GUINOT V. The time-line interpolation method for large-time-step Godunov-type schemes[J]. Journal of Computational Physics, 2002, 177:394-417. |
[84] | QIAN Z S, LEE C H. A class of large time step Godunov schemes for hyperbolic conservation laws and applications[J]. Journal of Computational Physics, 2011, 230(19):7418-7440. |
[85] | 钱战森. 大时间步长、高分辨率差分格式研究及其应用[D]. 北京:北京航空航天大学,2011. QIAN Z S. On large time step, high resolution finite difference scheme and its application[D]. Beijing:Beihang Univeristy, 2011(in Chinese). |
[86] | DONG H T, LIU F J. Large time step wave adding scheme for systems of hyperbolic conservation laws[J]. Journal of Computational Physics, 2018, 374:331-360. |
[87] | HARTEN A. On a large time-step high resolution scheme[J]. Mathematics of Computation, 1986, 46(174):379-399. |
[88] | 董海涛, 李椿萱. 快速大时间步长熵条件格式的分辨率研究[J]. 北京航空航天大学学报, 2003, 29(11):1011-1016. DONG H T, LEE C H. Researches on the resolution of fast large time step entropy condition scheme[J]. Journal of Beijing University of Aeronautics and Astronautics,2003, 29(11):1011-1016(in Chinese). |
[89] | QIAN Z S, LEE C H. On large time step TVD scheme for hyperbolic conservation laws and its efficiency evaluation[J]. Journal of Computational Physics, 2012, 231:7415-7430. |
[90] | PULLIAM T H, STEGER L. Recent improvements in efficiency, accuracy, and convergence for implicit approximate factorization algorithms:AIAA-1985-0360[R]. Reston:AIAA, 1985. |
[91] | VENKARAKRISHNAN V, JAMESON A. Computation of unsteady transonic flows by the solution of Euler equations[J]. AIAA Journal, 1988, 26(8):974-981. |
[92] | JORGENSON P, CHIMA R. An unconditionally stable Runge-Kutta method for unsteady flows:AIAA-1989-0205[R]. Reston:AIAA, 1989. |
[93] | CHADERJIAN N M, GURUSWAMY G P. Unsteady transonic Navier-Stokes computations for an oscillating wing using single and multiple zones:AIAA-1990-0313[R]. Reston:AIAA, 1990. |
[94] | MOITRA A. Enthalpy damping for high Mach number Euler solutions[J]. AIAA Journal, 1992, 30(2):300-301. |
[95] | JAMESON A, YOON S. Multigrid solution of the Euler equations using implicit schemes:AIAA-1985-0293[R]. Reston:AIAA, 1985. |
[96] | COURANT R, FRIEDRICHS K O. Supersonic flow and shock waves[M]. Berlin:Springer, 1999. |
[97] | LINDQVIST S, AURSAND P, FLATTEN T, et al. Large time step TVD schemes for hypersonic conservation laws[J]. SIAM Journal on Numerical Analysis, 2016, 54(5):2775-2798 |
[98] | PREBEG M, FLATTEN T, MULLER B. Large time step HLL and HLLC schemes[M]//ESAIM:Mathematical Modelling and Numerical Analysis, 2018, 52:1239-1260. |
[99] | EINFELDT B, MUNZ C D, ROE P L, et al. On Godunov-type methods near low densities[J]. Journal of Computational Physics, 1991, 92(2):273-295. |
[100] | BILLETT S J, TORO E F. On waf-type schemes for multidimensional hyperbolic conservation laws[J]. Journal of Computational Physics, 1997, 130:1-24. |
[101] | STRANG G. On the construction and comparison of difference schemes[J]. SIAM Journal on Numerical Analysis, 1968, 5:506-517. |
[102] | ANDERSON W K, THOMAS J L, VAN LEER B. Comparison of finite volume flux vector splittings for the Euler equations[J]. AIAA Journal, 1986, 24(9):1453-1460. |
[103] | DADONE A, GROSSMAN B. Surface boundary conditions for the numerical solution of the Euler equations:AIAA-1993-3334[R]. Reston:AIAA, 1993. |
[104] | LEVEQUE R J. Convergence of a large time step generalization of Godunov's method for conservation laws[J]. Communications on Pure and Applied Mathematics, 1984, 37(4):463-477. |
[105] | JAMESON A, LAX P D. Conditions for the construction of multi-point total variationl diminishing difference sche-mes[J]. Applied Numerical Mathematics, 1986, 2(3-5):335-345. |
[106] | JAMESON A, LAX P D. Corrigendum:Conditions for the construction of multi-point total variation diminishing difference schemes[J]. Applied Numerical Mathematics, 1987, 3(3):289. |
[107] | WANG J, WARNECKE G. On entropy consistency of large time step schemes I. The Godunov and Glimm schemes[J]. SIAM Journal on Numerical Analysis, 1993, 30(5):1229-1251, 1993. |
[108] | WANG J, WARNECKE G. On entropy consistency of large time step schemes II. Approximate Riemann solvers[J]. SIAM Journal on Numerical Analysis, 1993, 30(5):1252-1267. |
[109] | WANG J, WEN H, ZHOU T. On large time step Godunov scheme for hyperbolic conservation laws[J]. Communications in Mathematical Sciences, 2004, 2(3):477-495. |
[110] | TANG H, WARNECKE G. A note on (2K+1)-point conservative monotone schemes[J]. ESAIM:Mathematical Modelling and Numerical Analysis, 2004, 38(2):345-357. |
[111] | MURILLO J, NAVARRO P G, BRUFAU P, et al. Extension of a finite volume method to large time steps (CFL>1):Application to shallow water flows[J]. International Journal for Numerical Methods in Fluids, 2006, 50:63-102. |
[112] | HERNANDEZ M M, NAVARRO P G, MURILLO J. A large time step 1D upwind explicit scheme (CFL>1):Application to shallow water equations[J]. Journal of Computational Physics, 2012, 231:6532-6557. |
[113] | HERNANDEZ M M, HUBBARD M E, NAVARRO P G.A 2D extension of a large time step explicit scheme (CFL>1) for unsteady problems with wet/dry boundaries[J]. Journal of Computational Physics, 2014, 263:303-327. |
[114] | HERNANDEZ M M, LACASTA A, MURILLO J, et al. A large time step explicit scheme (CFL>1) on unstructured grids for 2D conservation laws:Application to the homogeneous shallow water equations[J]. Applied Mathematical Modelling, 2017, 47:294-317. |
[115] | XU R, ZHONG D, WU B, et al. A large time step Godunov scheme for free-surface shallow water equations[J]. Chinese Science Bulletin, 2014, 59:2534-2540. |
[116] | THOMPSON R J, MOELLER T. A discontinuous wave-in-cell numerical scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2015, 299:404-428. |
[117] | SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27:1-31. |
[118] | YEE H C. Construction of explicit and implicit symmetric TVD schemes and their applications[J]. Journal of Computational Physics, 1987, 68:151-179. |
[1] | 辛冀, 李攀, 陈仁良. 基于三阶显式格式的旋翼时间步进自由尾迹计算与验证[J]. 航空学报, 2013, 34(11): 2452-2463. |
[2] | 杨弘炜;李椿萱. 模拟三维粘性流动的显式多重网格算法[J]. 航空学报, 1994, 15(11): 1283-1290. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学