[1] BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2):197-224.[2] HOU J, ZHU J, HE F, et al. Stiffeners layout design of thin-walled structures with constraints on multi-fastener joint loads[J]. Chinese Journal of Aeronautics, 2017,30(4):1441-1450.[3] GUO X, CHENG G D. Recent development in structural design and optimization[J]. Acta Mechanica Sinica, 2010, 26(6):807-823.[4] ZHU J H, ZHANG W H, XIA L. Topology optimization in aircraft and aerospace structures design[J]. Archives of Computational Methods in Engineering, 2016, 23(4):595-622.[5] JIANG T, CHIREHDAST M. A systems approach to structural topology optimization:Designing optimal connections[J]. Journal of Mechanical Design, 1997, 119(1):40-47.[6] LI Q, STEVEN G P, XIE Y M. Evolutionary structural optimization for connection topology design of, multi-component systems[J]. Engineering Computations, 2001, 18(3/4):460-479.[7] ZHU J H, ZHANG W H, BECKERS P. Integrated layout design of multi-component system[J]. International Journal for Numerical Methods in Engineering, 2009, 78(6):631-651.[8] QIAN Z, ANANTHASURESH G K. Optimal embedding of rigid objects in the topology design of structures[J]. Mechanics Based Design of Structures and Machines, 2004, 32(2):165-193.[9] KANG Z, WANG Y. Integrated topology optimization with embedded movable holes based on combined description by material density and level sets[J]. Computer Methods in Applied Mechanics & Engineering, 2013, 255:1-13.[10] ZHANG W, ZHONG W, GUO X. Explicit layout control in optimal design of structural systems with multiple embedding components[J]. Computer Methods in Applied Mechanics & Engineering, 2015, 290:290-313.[11] ZHU J H, GAO H H, ZHANG W H, et al. A multi-point constraints based integrated layout and topology optimization design of multi-component systems[J]. Structural & Multidisciplinary Optimization, 2015, 51(2):397-407.[12] PEDERSEN N L. Maximization of eigenvalues using topology optimization[J]. Structural & Multidisciplinary Optimization, 2000, 20(1):2-11.[13] DU J, OLHOFF N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps[J]. Structural & Multidisciplinary Optimization, 2007, 34(2):91-110.[14] TSAI T D, CHENG C C. Structural design for desired eigenfrequencies and mode shapes using topology optimization[J]. Structural & Multidisciplinary Optimization, 2013, 47(5):673-686.[15] MA Z D, KIKUCHI N, CHENG H C. Topological design for vibrating structures[J]. Computer Methods in Applied Mechanics & Engineering, 1995, 121(1-4):259-280.[16] JOG C S. Topology design of structures subjected to periodic loading[J]. Journal of Sound & Vibration, 2002, 253(3):687-709.[17] SHU L, WANG M Y, FANG Z, et al. Level set based structural topology optimization for minimizing frequency response[J]. Journal of Sound & Vibration, 2011, 330(24):5820-5834.[18] YOON G H. Structural topology optimization for frequency response problem using model reduction schemes[J]. Computer Methods in Applied Mechanics & Engineering, 2010, 199(25-28):1744-1763.[19] BESSELINK B, TABAK U, LUTOWSKA A, et al. A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control[J]. Journal of Sound & Vibration, 2013, 332(19):4403-4422.[20] LIU H, ZHANG W H, GAO T. A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations[J]. Structural & Multidisciplinary Optimization, 2015, 51(6):1321-1333.[21] 刘虎, 朱继宏, 张卫红. 简谐载荷作用下连续体结构位移响应拓扑优化[J]. 机械制造, 2012, 50(7):27-30. LIU H, ZHU J H, ZHANG W H. Topological optimization of continuue structures with displacement response under harmonic load[J]. Machinary, 2012, 50(7):27-30(in Chinese).[22] 张卫红, 郭文杰, 朱继宏. 部件级多组件结构系统的整体式拓扑布局优化[J]. 航空学报, 2015, 36(8):2662-2669. ZHANG W H, GUO W J, ZHU J H. Integrated layout and topology optimization design of multi-component systems with assembly units[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2662-2669(in Chinese).[23] ZHANG Q, ZHANG W H, ZHU J H, et al. Layout optimization of multi-component structures under static loads and random excitations[J]. Engineering Structures, 2012, 43(43):120-128.[24] LIU G R, QUEK S S. The finite element method:A practical course[M]. Oxford:Butterworth-Heinemann, 2003:271-277.[25] CLOUGH R W, PENZIEN J, GRIFFIN D S. 结构动力学[M]. 陈嘉炜, 译. 台北:科技图书股份有限公司, 1981:271-284. CLOUGH R W, PENZIEN J, GRIFFIN D S. Dynamics of structures[M]. CHEN J W, translated. Taipei:Technology Books Co. Ltd., 1981:271-284(in Chinese).[26] BENDSØE M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9):635-654.[27] 朱继宏, 张卫红, 邱克鹏. 结构动力学拓扑优化局部模态现象分析[J]. 航空学报, 2006, 27(4):619-623. ZHU J H, ZHANG W H, QIU K P. Investigation of localized modes in topology optimization of dynamic structures[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4):619-623(in Chinese).[28] STOLPE M, SVANBERG K. An alternative interpolation scheme for minimum compliance topology optimization[J]. Structural & Multidisciplinary Optimization, 2001, 22(2):116-124.[29] ZHU J H, BECKERS P, ZHANG W H. On the multi-component layout design with inertial force[J]. Journal of Computational & Applied Mathematics, 2010, 234(7):2222-2230.[30] BENDSOE M P, SIGMUND O. Topology optimization:Theory, methods, and applications[M]. Berlin:Springer Science & Business Media, 2013:16-17.[31] OLHOFF N, DU J. Topological design of continuum structures subjected to forced vibration[C]//Proceedings of 6th World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro:Engopt Orgnization, 2005:1-8.[32] OLHOFF N, DU J. Generalized incremental frequency method for topological design of continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency[J]. Structural and Multidisciplinary Optimization, 2016, 5(54):1113-1141. |