[1] Raja P, Pugazhenthi S. Path planning for a mobile robot in dynamic environments[J]. International Journal of Physical Sciences, 2011, 6(20): 4721-4731.
[2] Gao X G, Yang Y L. Initial path planning based on different threats for unmanned combat air vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(5): 435-438 (in Chinese). 高晓光, 杨有龙. 基于不同威胁体的无人作战飞机初始路径规划[J]. 航空学报, 2003, 24(5): 435-438.
[3] Li X, Xu X H, Zhao Y F, et al. Flight rerouting path planning in dispersedly distributed severe weather areas [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2342-2347 (in Chinese). 李雄, 徐肖豪, 赵嶷飞, 等. 散点状分布危险天气区域下的航班改航路径规划[J]. 航空学报, 2009, 30(12): 2342-2347.
[4] Zhou L F, Jiang J. An approach to navigation for lunar rover based on virtual reality technology[J]. Journal of Software, 2012, 7(3): 632-637.
[5] Zhang Y, Gao X G, Wei X F. Simulation of dynamic path planning for UAV in 4D space[J]. Journal of System Simulation, 2009, 21(24): 7838-7841 (in Chinese). 张艳, 高晓光, 魏小丰. 四维空间中的无人机动态路径规划及仿真[J]. 系统仿真学报, 2009, 21(24): 7838-7841.
[6] Willms A R, Yang S X. An efficient dynamic system for real-time robot-path planning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(4): 755-766.
[7] Ren J, Gao X G, Zhang Y. Path planning based on model predictive control algorithm under moving threat[J]. Control Theory & Applications, 2010, 27(5): 641-647 (in Chinese). 任佳, 高晓光, 张艳. 移动威胁情况下的无人机路径规划[J]. 控制理论与应用, 2010, 27(5): 641-647.
[8] Raja P, Pugazhenthi S. Optimal path planning of mobile robots: a review[J]. International Journal of Physical Sciences, 2012, 7(9): 1314-1320.
[9] Cui J, Zhu Q B, Wang J. Path planning of robot based on second division and improved genetic algorithm[J]. Computer Engineering and Applications, 2011, 47(28): 232-236 (in Chinese). 崔靖, 朱庆保, 王娟. 二次划分和改进遗传算法的机器人路径规划[J]. 计算机工程与应用, 2011, 47(28): 232-236.
[10] Ren P, Gao X G. Human intervention flight path planning for UAV low-altitude penetration[J]. Systems Engineering and Electronics, 2014, 35(4): 679-684 (in Chinese). 任鹏, 高晓光. 有限干预下的UAV低空突防航迹规划[J]. 系统工程与电子技术, 2014, 35(4): 679-684.
[11] Tuncer A, Yildirim M. Dynamic path planning of mobile robots with improved genetic algorithm[J]. Computers & Electrical Engineering, 2012, 38(6): 1564-1572.
[12] Nasrollahy A Z, Javadi H. Using particle swarm optimization for robot path planning in dynamic environments with moving obstacles and target[C]//Proceedings of Third UKSim European Symposium on Computer Modeling and Simulation. Piscataway, NJ: IEEE Press, 2009: 60-65.
[13] Raja P, Pugazhenthi S. Path planning for mobile robots in dynamic environments using particle swarm optimization[C]//Proceedings of International Conference on Advances in Recent Technologies in Communication and Computing. Piscataway, NJ: IEEE Press, 2009: 401-405.
[14] Kala R, Shukla A, Tiwari R. Dynamic environment robot path planning using hierarchical evolutionary algorithms[J]. Cybernetics and Systems: An International Journal, 2010, 41(6): 435-454.
[15] Brits R, Engelbrecht A P, Van Den Bergh F. Scalability of niche PSO[C]// Proceedings of the 2003 IEEE Swarm Intelligence Symposium. Piscataway, NJ: IEEE Press, 2003: 228-234.
[16] Xu X Q, Zhu Q B. Multi-artificial fish-swarm algorithm and a rule library based dynamic collision avoidance algorithm for robot path planning in a dynamic environment [J]. Acta Electronica Sinica, 2012, 40(8): 1694-1700 (in Chinese). 徐晓晴, 朱庆保. 动态环境下基于多人工鱼群算法和避碰规则库的机器人路径规划[J]. 电子学报, 2012, 40(8): 1694-1700.
[17] Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer[C]//Proceedings of the 2005 IEEE Swarm Intelligence Symposium. Piscataway, NJ: IEEE Press, 2005: 124-129.
[18] Liang J J, Song H, Qu B Y, et al. Path planning based on dynamic multi-swarm particle swarm optimizer with crossover[J]. Intelligent Computing Theories and Applications, 2012, 7390: 159-166.
[19] Liang J J, Song H, Qu B Y. Performance evaluation of dynamic multi-swarm particle swarm optimizer with different constraint handling methods on path planning problems[C]//Proceedings of 2013 IEEE Workshop on Memetic Computing (MC). Piscataway, NJ: IEEE Press, 2013, 65-71.
[20] Hocaoglu C, Sanderson A C. Planning multiple paths with evolutionary speciation[J]. IEEE Transactions on Evolutionary Computation, 2001, 5(3): 169-191.
[21] Huang V L, Suganthan P N, Liang J J. Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems[J]. International Journal of Intelligent Systems, 2006, 21(2): 209-226.
[22] Zhao S Z, Suganthan P N, Pan Q K, et al. Dynamic multi-swarm particle swarm optimizer with harmony search[J]. Expert Systems with Applications, 2011, 38(4): 3735-3742.
[23] Yang X S. Firefly algorithm, stochastic test functions and design optimisation[J]. International Journal of Bio-Inspired Computation, 2010, 2(2): 78-84.
[24] Li B L, Shi X L, Gou C X, et al. Multivariant optimization algorithm for multimodal optimization[J]. Applied Mechanics and Materials, 2014, 483: 453-457.
[25] Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295.
[26] Yang X S. Nature-inspired metaheuristic algorithms[M]. Bristol, UK: Luniver press, 2010: 4-5.
[27] Yang X S. Stochastic algorithms: foundations and applications:firefly algorithms for multimodal optimization[M]. Heidelberg, Berlin: Springer, 2009: 169-178.
[28] Liu C, Gao Z, Zhao W. A new path planning method based on firefly algorithm[C]//Proceedings of 2012 Fifth International Joint Conference on Computational Sciences and Optimization (CSO). Piscataway, NJ: IEEE Press, 2012: 775-778.
[29] Zhu Q B, Ma W. A robot path planning algorithm based on scout ants in collaboration with foraging ants[J]. Control and Decision, 2009, 24(4): 601-605 (in Chinese). 朱庆保, 马卫. 基于侦察蚁和觅食蚁协作的机器人路径规划算法[J]. 控制与决策, 2009, 24(4): 601-605.
[30] Gao X G, Wei X F, Zheng J S. UAV on-line path re-planning based on threats evaluation improved algorithm[J]. Fire Control & Command Control, 2012, 37(9): 45-49 (in Chinese). 高晓光, 魏小丰, 郑景嵩. 基于改进威胁代价的无人机路径在线重规划[J]. 火力与指挥控制, 2012, 37(9): 45-49.
[31] Liang J J, Song H, Qu B Y, et al. Comparison of three different curves used in path planning problems based on particle swarm optimizer[J]. Mathematical Problems in Engineering, 2014, 2014: 1-15.
[32] Huy Q, Seiichi M, Nejad H T N, et al. Dynamic and safe path planning based on support vector machine among multi moving obstacles for autonomous vehicles[J]. IEICE Transactions on Information and Systems, 2013, 96(2): 314-328.
[33] Sturtevant N R. Benchmarks for grid-based pathfinding[J]. IEEE Transactions on Computational Intelligence and AI in Games, 2012, 4(2): 144-148.
[34] Miao Y Q, Khamis A, Karray F O, et al. Global optimal path planning for mobile robots based on hybrid approach with high diversity and memorization[C]//Proceedings of the 2nd International Conference on Autonomous and Intelligent Systems. Berlin: Springer, 2011: 1-10.
[35] Fu X W, Li J L, Gao X G. Defense penetration path planning for UCAV based on threat neting[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 1042-1052 (in Chinese). 符小卫, 李金亮, 高晓光. 威胁联网下无人作战飞机突防作战航迹规划[J]. 航空学报, 2014, 35(4): 1042-1052.
[36] Shi Y, Eberhart R. A modified particle swarm optimizer[C]//Evolutionary Computation Proceedings of 1998 IEEE World Congress on Computational Intelligence. Piscataway, NJ: IEEE Press, 1998: 69-73.
[37] Djuriši? A B. Elite genetic algorithms with adaptive mutations for solving continuous optimization problems-application to modeling of the optical constants of solids[J]. Optics Communications, 1998, 151(1): 147-159.
[38] Li X D. Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization[C]//Genetic and Evolutionary Computation-GECCO 2004. Berlin: Springer, 2004: 105-116.
[39] Baykasoglu A, Ozsoydan F B. An improved firefly algorithm for solving dynamic multidimensional knapsack problems[J]. Expert Systems with Applications, 2014, 41(8): 3712-3725.
[40] Zhang X J, Guan X M, Hwang I, et al. A hybrid distributed-centralized conflict resolution approach for multi-aircraft based on cooperative co-evolutionary[J]. Science China Information Sciences, 2013, 56(12): 1-16.
[41] Guan X M, Zhang X J, Wei J, et al. A strategic conflict avoidance approach based on cooperative coevolutionary with the dynamic grouping strategy[J]. International Journal of Systems Science, DOI: 10.1080/00207721.2014.966282. |