航空学报 > 2011, Vol. 32 Issue (3): 448-456

非均匀噪声稀疏均匀圆阵的二维DOA估计

潘捷, 周建江, 汪飞   

  1. 南京航空航天大学 信息科学与技术学院, 江苏 南京 210016
  • 收稿日期:2010-06-08 修回日期:2010-09-20 出版日期:2011-03-25 发布日期:2011-03-24
  • 通讯作者: Tel.:025-84892430 E-mail: zjjee@nuaa.edu.cn E-mail:zjjee@nuaa.edu.cn
  • 作者简介:潘捷(1982- ) 男,博士研究生。主要研究方向:阵列信号处理。 Tel: 025-84896490-12509 E-mail: panjie1982@nuaa.edu.cn 周建江(1962- ) 男,博士,教授,博士生导师。主要研究方向:信号处理、目标特征的提取与控制。 Tel: 025-84892430 E-mail: zjjee@nuaa.edu.cn汪飞(1976- ) 男,博士,副教授。主要研究方向:谱分析、信号特征参信量估计等。
  • 基金资助:

    江苏省六大人才高峰计划A类(P0952-041)

2-D DOA Estimation for Sparse Uniform Circular Array in Presence of Unknown Nonuniform Noise

PAN Jie, ZHOU Jianjiang, WANG Fei   

  1. College of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2010-06-08 Revised:2010-09-20 Online:2011-03-25 Published:2011-03-24

摘要: 针对在机载雷达、通信等领域有着广泛应用的均匀圆阵(UCA),研究了非均匀噪声下稀疏均匀圆阵的二维波达方向(DOA)估计。首先采用改进的相位模式方法构造非均匀噪声稀疏均匀圆阵的波束空间似然函数;之后,在分析非均匀噪声稀疏均匀圆阵的波束空间似然函数特点的基础上,修改了Burg的逆迭代算法以适应稀疏均匀圆阵下非均匀噪声自相关矩阵的估计;最后,经过推导非均匀噪声下似然函数的梯度与近似Hessian矩阵,实现了基于修正的变换投影(MVP)方法的非均匀噪声下目标二维DOA估计。仿真结果表明,在非均匀噪声环境下,该方法估计精度优于稀疏均匀圆阵求根MUSIC和传统均匀噪声最大似然估计方法,对于相干信号源亦具有良好的估计性能。

关键词: 均匀圆阵, 波达方向, 非均匀噪声, 传感器阵列处理, 最大似然

Abstract: Uniform circular arrays (UCAs) are widely used in airborne radar and communication applications. This article addresses the 2-D DOA estimation for sparse UCA in the presence of unknown nonuniform noise. First of all, the beamspace likelihood function for sparse UCA in the nonuniform noise is constructed by means of the modified phase-mode principle. Then, based on an analysis of the beamspace likelihood function of sparse UCA in the nonuniform noise, Burg’s inverse iteration algorithm is modified to estimate the noise covariance matrix of the nonuniform noise on the sparse UCA. Finally, by deriving the gradient and the asymptotic Hessian matrix of the likelihood function in the nonuniform noise, the angle parameters are estimated based on the (Modified Variable Projection, MVP) method. The simulation results show that the proposed method has better performance than sparse UCA root-MUSIC and the traditional maximum-likelihood algorithm. This method can deal with coherent sources as well.

Key words: uniform circular array (UCA), direction of arrival (DOA), nonuniform noise, sensor array processing, maximum likelihood

中图分类号: