航空学报 > 2008, Vol. 29 Issue (5): 1314-1318

基于改进的CMAC的电动加载系统复合控制

杨波,王俊奎

  

  1. 北京航空航天大学 自动化科学与电气工程学院
  • 收稿日期:2007-07-29 修回日期:2007-12-04 出版日期:2008-09-25 发布日期:2008-09-25
  • 通讯作者: 杨波

Hybrid Control Based on Improved CMAC for Motor-driven Loading System

Yang Bo,Wang Junkui   

  1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics
  • Received:2007-07-29 Revised:2007-12-04 Online:2008-09-25 Published:2008-09-25
  • Contact: Yang Bo

摘要: 由于电动加载系统的非线性和时变性,特别是在运动干扰下传统的前馈控制方法很难得到满意的控制效果。针对电动加载系统的非线性及多余力矩强扰动的特点,依据神经网络的非线性逼近和自学习特性,提出了基于改进小脑模型关联控制器(CMAC)的复合控制策略,结合改进的CMAC与PID实现复合控制,由CMAC实现前馈控制,PID控制实现反馈控制,既保证了快速实时,又进一步减小了多余力矩干扰。改进的CMAC利用存储单元的先前学习次数作为可信度,消除了常规前馈型CMAC的过学习现象。文中建立了电动加载系统的数学模型,给出了具体的控制结构和算法。系统的动态仿真表明,该方法可有效地抑制多余力矩,改善电动加载系统的动态加载性能,有很强的鲁棒性。

关键词: 电动加载系统, 多余力矩, PID控制, CMAC, 复合控制

Abstract: The motor-driven loading system (MDLS) is highly nonlinear and time variant. It is difficult for the traditional feedforward control method to improve the performance, especially under the disturbance of movement, the so called extraneous torque problem. Aiming at control of MDLS, a hybrid control scheme based on the improved cerebella model articulation controller(CMAC) is proposed. In the controller, CMAC is compound with PID algorithm, the feedforward control is realized by CMAC while the feedback control is realized by PID controller. It absorbs the fastlearning and precise approaching advantages of CMAC to enhance traditional control method. The former learned timers of the assressed hypercubes is used as the credibility in order to eliminate the excess self-learning phenomena. The MDLS’s mathematical model is established and the detailed control structure is put forward. Simulation results show that the proposed controller can effectively eliminate the extraneous force and fairly improve the dynamic loading performances of the MDLS. The robustness to unknown external load disturbances is improved.

Key words: motordriven loading system, extraneous torque, PID control, CMAC, hybrid control

中图分类号: