航空学报 > 2008, Vol. 29 Issue (2): 333-337

双周期带涂层纤维压电复合材料反平面问题分析

谢新亮1,肖俊华1,徐耀玲2,蒋持平1   

  1. 1 北京航空航天大学 航空科学与工程学院 2 燕山大学 建筑工程与力学学院
  • 收稿日期:2007-09-26 修回日期:2007-11-06 出版日期:2008-03-15 发布日期:2008-03-15
  • 通讯作者: 蒋持平1

Analysis for Doubly Periodic Coated Fiber Piezoelectric Composite Materials Under  Antiplane Shear

Xie Xinliang1,Xiao Junhua1,Xu Yaoling2,Jiang Chiping1   

  1. 1.     School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics  2 School of Civil Engineering and Mechanics, Yanshan University
  • Received:2007-09-26 Revised:2007-11-06 Online:2008-03-15 Published:2008-03-15
  • Contact: Jiang Chiping1

摘要:

研究双周期带涂层纤维压电复合材料反平面问题。利用Eshelby等效夹杂原理引入特征应变和特征电场,并结合双准周期Riemann边值问题理论,获得了问题在反平面机械载荷和面内电载荷作用时的解析解。由本文解的特殊情形可以退化为已有结果。数值算例考察了复合材料内部应力和电场随复合材料各组分电弹参数的变化规律,研究了纤维排列方式和纤维体积分数对复合材料有效电弹系数的影响。带涂层纤维正六边形排列时的有效电弹系数与广义自洽方法的预测结果非常接近。结果对新型航空材料的设计和优化具有参考价值。

关键词: 双周期, 带涂层纤维, 压电复合材料, 反平面剪切, Riemann边值问题

Abstract:

The work addresses piezoelectric composites with doubly periodically distributed coated fiber under antiplane shear and inplane electrical field. By applying Eshelby’s equivalent inclusion method, the eigenstrain and eigenelectricalfield concepts are introduced. Then combining the theory of doubly quasiperiodic Riemann boundary value problem, an analytical solution to the problem is obtained. Some existing solutions can be obtained as special cases of the present solution. The variations of the stress and electrical field with piezoelectric parameters of the composites are investigated.

Key words: doubly , periodic,  , coated , fiber,  , piezoelectric , composite , materials,  , antiplane , shear,  , Riemann , boundary , value , problem

中图分类号: