航空学报 > 2005, Vol. 26 Issue (1): 40-43

随机结构孤立特征值的统计特性

黄斌, 瞿伟廉   

  1. 武汉理工大学 土木工程与建筑学院, 湖北 武汉 430070
  • 收稿日期:2003-12-09 修回日期:2004-04-08 出版日期:2005-02-25 发布日期:2005-02-25

Statistics of Isolated Eigenvalues of Random Structures

HUANG Bin, QU Wei-lian   

  1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
  • Received:2003-12-09 Revised:2004-04-08 Online:2005-02-25 Published:2005-02-25

摘要: 研究了随机结构的孤立特征值问题。将材料物理量的随机场扩展为K-L(Karhunen-Loeve)正交展式,采用非正交多项式混沌展式表达孤立特征值,建立了和摄动法类似的一系列确定的递推方程,并通过确定性有限元方法求解了这些递推方程,得到了特征值的均值和方差。在算例中用蒙特卡洛方法验证了本方法的正确性。

关键词: 随机结构, 孤立特征值, K-L正交展式, 非正交多项式混沌, 摄动法

Abstract: A new random finite element method for solving eigenvalue problems involving material variability is given. The random material properties, such as the modulus of elasticity, are represented by Karhunun-Loeve expansion. Random structural eigenvalues are expressed as nonorthogonal polynomials chaos. With the aid of the finite element method, a set of deterministic recursive equations is set up to deal with eigenvalue problems through nonorthogonal polynomials of the same order. The statistics of eigenvalues is derived. A beam problem and a plate problem are investigated by the new method. The derived second-order statistics of eigenvalues is found in good agreement with those obtained by Monte-Carlo simulation.

Key words: random structure, isolated eigenvalue, Karhunen-Loeve expansion, nonorthogonal polynomials chaos, perturbation method

中图分类号: