航空学报 > 2011, Vol. 32 Issue (7): 1180-1188   doi: CNKI:11-1929/V.20110126.0938.001

低速叶型气动反问题设计方法

杜磊, 宁方飞   

  1. 北京航空航天大学 能源与动力工程学院, 北京 100191
  • 收稿日期:2010-10-22 修回日期:2010-11-26 出版日期:2011-07-25 发布日期:2011-07-23
  • 作者简介:杜磊(1985- ) 男, 博士研究生。 主要研究方向: 叶轮机械CFD。 E-mail: ahxcdl@163.com 宁方飞(1974- ) 男, 博士, 副教授。 主要研究方向: 叶轮机械CFD、 流体高级数值模拟、 数值优化方法及理论。 Tel: 010-82338753 E-mail: fangfei.ning@buaa.edu.cn
  • 基金资助:

    国家自然科学基金(50506001)

Aerodynamic Inverse Design Method for Low Mach Number Airfoils

DU Lei, NING Fangfei   

  1. School of Jet Propulsion, Beihang University, Beijing 100191, China
  • Received:2010-10-22 Revised:2010-11-26 Online:2011-07-25 Published:2011-07-23

摘要: 低马赫数不可压流动中声速与流速大小差别巨大,采用基于可压缩流动控制方程的计算格式求解流场时,由于数值黏性的污染,解的精度低且收敛性差,通常可使用时间预处理技术来解决这一问题。在基于控制理论的优化方法中,共轭方程的Jacobian矩阵和流动方程的系数矩阵相似,因而在低流动马赫数下,求解共轭方程存在着与求解流动方程相同的数值污染和数值刚性问题。首先推导了带有预处理的Roe格式,然后发展了适合全速度流动的共轭方程求解方法,最后选取翼型和叶栅两个典型算例进行了验证。计算结果表明所发展的方法可很好地用于低马赫数时的气动反问题设计。

关键词: 低马赫数, 预处理, 共轭方程, 反问题设计, 敏感性导数

Abstract: Because of the large disparity between the acoustic wave speed and the waves convected at fluid speed, the accuracy of the solution to the flow fields of non-compressible low Mach number flows is poor and the convergence rate is bad when using the standard convective scheme based on compressible flows. Generally the preconditioning techniques are used to deal with this problem. In the optimization method based on control theory, the Jacobian matrix of adjoint equations and the mxatri of flow equations are similar, so the same difficulties such as oversized numerical viscosity and numerical rigidity exist when solving the adjoint equations. In this paper, a Roe scheme with preconditioning is first deduced. Then a full speed numerical scheme is developed for adjoint equations. Finally, two typical tests about an airfoil and a cascade are presented. The results indicate that the preconditioned adjoint equation method can develop a low Mach number aerodynamic inverse design efficiently.

Key words: low Mach number, preconditioning, adjoint equation, inverse design, sensitivity derivative

中图分类号: