Reviews

Air traffic management technologies for digital low-altitude integrated operations

  • Fan PU ,
  • Zhijie CHEN ,
  • Yang LIU ,
  • Xin GENG ,
  • Yongwen ZHU ,
  • Kejin REN
Expand
  • State Key Laboratory of Air Traffic Management System,Beijing 100089,China

Received date: 2024-09-30

  Revised date: 2024-10-21

  Accepted date: 2025-04-16

  Online published: 2025-05-06

Supported by

Youth Talent Support Program(2022-JCJQ-QT-021)

Abstract

As aircraft technology matures and economic demand surges, the characteristics of low-altitude flight-such as heterogeneous manned and unmanned ​integrated operations, high-density integration, and autonomous operation-are becoming more prominent, posing significant challenges to low-altitude Air Traffic Control (ATC). Digital low-altitude airspace reconstructs the physical flight airspace in the information space, forming a foundational digital low-altitude framework. This transforms the traditional object-oriented airspace management model into a computation and optimization problem focused on airspace resources, and leverages the invariance of airspace, thereby reducing the complexity of managing large-scale heterogeneous objects. On this basis, it is necessary to establish a complete technical system, from the infrastructure for information acquisition and processing to the business logic of coordinated control of human, machine, and domain traffic behaviors, to support the safe and efficient ​digital control of low-altitude airspace. This paper first reviews the digital development trends of low-altitude air traffic control. It then introduces the core data information infrastructure for ​digital low-altitude​ air traffic control. Based on the digital airspace framework, this paper further discusses the key technical challenges of integrated operations, and proposes feasible technical paths for constructing a safe and efficient digital low-altitude integrated operation technical system, to realize automatic aircraft detection and avoidance as well as support ATC decision. Finally, it offers development suggestions for digital control​ of low-altitude air traffic, providing a reference for the future upgrade of digital low-altitude air traffic management capabilities and the development of related disciplines, aiming to ensure safe and orderly integrated operations and promote the healthy development of the low-altitude economy.

Cite this article

Fan PU , Zhijie CHEN , Yang LIU , Xin GENG , Yongwen ZHU , Kejin REN . Air traffic management technologies for digital low-altitude integrated operations[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(11) : 531331 -531331 . DOI: 10.7527/S1000-6893.2025.31331

References

[1] 廖小罕, 徐晨晨, 叶虎平. 低空经济发展与低空路网基础设施建设的效益和挑战[J]. 中国科学院院刊202439 (11): 1966-1981.
  LIAO X H, XU C C, YE H P. Benefits and challenges of constructing low-altitude air route network infrastructure for developing low-altitude economy[J]. Bulletin of Chinese Academy of Sciences202439(11): 1966-1981 (in Chinese).
[2] 陈义友, 张建平, 邹翔, 等. 民用无人机交通管理体系架构及关键技术[J]. 科学技术与工程202121(31): 13221-13237.
  CHEN Y Y, ZHANG J P, ZOU X, et al. System framework and key technologies of civil unmanned aircraft system traffic management[J]. Science Technology and Engineering202121(31): 13221-13237 (in Chinese).
[3] 朱永文, 陈志杰, 蒲钒, 等. 数字化空域系统[J]. 中国工程科学202123(3): 135-143.
  ZHU Y W, CHEN Z J, PU F, et al. Development of digital airspace system[J]. Engineering202123(3): 135-143 (in Chinese).
[4] 权在昕, 武丁杰, 高嘉静, 等. 城市低空空中交通及无人机路径规划研究综述[J]. 航空计算技术202454(2): 121-126.
  QUAN Z X, WU D J, GAO J J, et al. Overview of urban low altitude air mobility and UAV path planning[J]. Aeronautical Computing Technique202454(2): 121-126 (in Chinese).
[5] STANLEY M. Flying cars: Investment implications of autonomous urban air mobility[R]. New York: Morgan Stanley Research, 2021.
[6] HAMILTON B A. Final report urban air Mobility (UAM) market study[R]. McLean: National Aeronautics and Space Administration, 2018.
[7] LEE C J, BAE B, LEE Y L, et al. Societal acceptance of urban air mobility based on the technology adoption framework[J]. Technological Forecasting and Social Change2023196: 122807.
[8] SESAR Joint Undertaking. Air traffic management research & innovation 2020 highlights[R]. Luxembourg: Publications Office of the European Union, 2021.
[9] CONSULTING LLC SMG. Advanced air mobility infrastructure readiness index[EB/OL]. 2024. .
[10] 朱承杰. 低空空域开放对民航运输发展的影响[J]. 中国航务周刊2024(22): 69-71.
  ZHU C J. The influence of low-altitude airspace opening on the development of civil aviation transportation[J]. China Shipping Gazette2024(22): 69-71 (in Chinese).
[11] 周昊. 中国民用无人与有人驾驶航空器融合运行的立法发展与规制挑战[C]∥《新兴权利》集刊2024年第2卷——人工智能背景下的新兴权利研究文集. 上海: 上海市法学会, 2024: 183-191.
  ZHOU H. Legislative development and regulatory challenges of integrated operation of civil unmanned and manned aircraft in China[C]?∥Emerging Rights Journal Vol. 2, 2024: Research Collection on Emerging Rights in the Context of Artificial Intelligence. Shanghai: Shanghai Law Society, 2024: 183-191.?
[12] ICAO. Unmanned Aircraft Systems (UAS), circular: USA 328. Cir. 328 AN/190 ?[S]. Montreal: ICAO, 2016.
[13] FAHEY H K M, MILLER M T. Unmanned systems integrated roadmap 2017-2042[R]. Defense Technical Information Center, 2018.
[14] 张建平, 陈晓, 任家龙. 民用无人机交通管理策略综述[J]. 航空计算技术201747(6): 122-128.
  ZHANG J P, CHEN X, REN J L. Review on civil unmanned aircraft traffic management strategies[J]. Aeronautical Computing Technique201747(6): 122-128 (in Chinese).
[15] 姜梁. 中国无人机行业军民融合深度发展研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
  JIANG L. Research on the deep development of civil-military integration in UAV industry of China[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
[16] 四川省人民政府办公厅. 四川省民用无人驾驶航空器安全管理暂行规定 [EB/OL]. 2017. .
  Sichuan Provincial People’s government Office. Interim regulations on the safety management of civil unmanned aircraft in Sichuan province [EB/OL]. 2017. (in Chinese).
[17] 深圳市人民政府办公厅. 深圳市民用微轻型无人机管理暂行办法 [EB/OL]. 2019..
  General Office of the Shenzhen Municipal People’s Government. Interim Measures for the Management of Civil Micro and Light Unmanned Aerial Vehicles in Shenzhen [EB/OL]. 2019. (in Chinese).
[18] 朱永文, 陈志杰, 蒲钒, 等. 空中交通智能化管理的科学与技术问题研究[J]. 中国工程科学202325(5): 174-184.
  ZHU Y W, CHEN Z J, PU F, et al. Scientific and technological issues for the intelligent management of air traffic[J]. Strategic Study of CAE202325(5): 174-184 (in Chinese).
[19] 陈志杰. 未来空中交通管制系统发展面临的技术挑战[J]. 指挥信息系统与技术20167(6): 1-5.
  CHEN Z J. Technological challenges of future air traffic control system development[J]. Command Information System and Technology20167(6): 1-5 (in Chinese).
[20] National Academies of Sciences, Engineering, and Medicine. Advancing aerial mobility: A national blueprint[R]. Washington, D.C.: National Academies Press, 2020.
[21] 李力, 郝志鹏, 秦嘉徐, 等. 无人机特定运行风险评估方法的应用[J]. 民航学报20237(1): 105-108, 24.
  LI L, HAO Z P, QIN J X, et al. Application of specific operations risk assessment method for UAV[J]. Journal of Civil Aviation20237(1): 105-108, 24 (in Chinese).
[22] 全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报202041(1): 023238.
  QUAN Q, LI G, BAI Y Q, et al. Low altitude UAV traffic management: An introductory overview and proposal?[J]. Acta Aeronautica et Astronautica Sinica202041(1): 023238 (in Chinese).
[23] 王翔宇. 城市空中交通市场发展前景分析[J]. 航空动力2019(4): 18-21.
  WANG X Y. The future of urban air mobility market[J]. Aerospace Power2019(4): 18-21 (in Chinese).
[24] 谢智辉, 张宇. 航空器运行所需空间利用权概念的建立与应用[J]. 民航学报20215(2): 45-48, 93.
  XIE Z H, ZHANG Y. Establishment and application of required aircraft operation space utilization rights concept[J]. Journal of Civil Aviation20215(2): 45-48, 93 (in Chinese).
[25] 李伟. 空域管理数字化转型思考[J]. 民航管理2023(9): 65-67.
  LI W. Reflections on the digital transformation in airspace management[J]. Civil Aviation Management2023(9): 65-67 (in Chinese).
[26] 常卫乐, 丁海涛, 卢杨. 低空开放对空管的影响及对策分析[J]. 科技创新导报201916(20): 244, 246.
  CHANG W L, DING H T, LU Y. Influence of low-altitude opening on air traffic control and its countermeasures[J]. Science and Technology Innovation Herald201916(20): 244, 246 (in Chinese).
[27] SMITH A, JOHNSON B. Integrating UAVs into the national airspace system: Challenges and opportunities[J]. Aerospace Science and Technology202012(4):123-135.
[28] DOE J. The role of digital technologies in low altitude airspace management?[J]. Journal of Air Traffic Control202125(3): 45-58.
[29] 章和盛. 着力推动低空空管平台构建与应用有效赋能城市全域低空安全管控[J]. 中国安防2024(6): 78-82.
  ZHANG H S. Efforts will be made to promote the construction and application of low-altitude air traffic control platform and effectively empower the city’s low-altitude safety management and control[J]. China Security & Protection2024(6): 78-82 (in Chinese).
[30] 陈志杰, 汤锦辉, 王冲, 等. 人工智能赋能空域系统,提升空域分层治理能力[J]. 航空学报202142(4): 525018.
  CHEN Z J, TANG J H, WANG C, et al. Using artificial intelligence in airspace system to improve airspace hierarchical governance capability[J]. Acta Aeronautica et Astronautica Sinica202142(4): 525018 (in Chinese).
[31] 沈映春, 张豪兴. 数字基础设施建设对低空经济高质量发展的影响研究[J]. 北京航空航天大学学报(社会科学版)202437(5): 96-108.
  SHEN Y C, ZHANG H X. Impact of digital infrastructure construction on the high-quality development of low-altitude economy?[J]. Journal of Beijing University of Aeronautics and Astronautics (Social Sciences Edition)202437(5): 96-108 (in Chinese).
[32] 张夏恒.新质生产力背景下低空经济高质量发展的机理与路径[J].苏州大学学报(哲学社会科学版)202546(1):112-122.
  ZHANG X H. Low-altitude economy development under new quality productive forces: Mechanisms and pathways[J]. Journal of Soochow University(Philosophy & Social Science Edition)202546(1): 112-122 (in Chinese).
[33] RTCA. Minimum operational performance standards for un-manned aircraft systems: DO-365 [S]. Washington, D.C., RTCA, 2020.
[34] 杨振宇, 朱小伟. 低空开放存在的问题及空管对策分析[J]. 黑龙江科学202112(18): 138-139.
  YANG Z Y, ZHU X W. Problems of low altitude open and countermeasure analysis of air traffic control[J]. Heilongjiang Science202112(18): 138-139 (in Chinese).
[35] 朱晓辉, 朱永文, 王家隆. 低空空域管理与飞行服务保障[M]. 北京: 国防工业出版社, 2022.
  ZHU X H, ZHU Y W, WANG J L. Low altitude airspace management and flight service support[M]. Beijing: National Defense Industry Press, 2022 (in Chinese).
[36] 廖小罕, 屈文秋, 徐晨晨, 等. 城市空中交通及其新型基础设施低空公共航路研究综述[J]. 航空学报202344(24): 028521.
  LIAO X H, QU W Q, XU C C, et al. A review of urban air mobility and its new infrastructure low-altitude public routes[J]. Acta Aeronautica et Astronautica Sinica202344(24): 028521 (in Chinese).
[37] 夏泳, 田洛. 面向低空经济的空联网络组网关键技术研究综述[J]. 重庆邮电大学学报(自然科学版)202436(4): 619-632.
  XIA Y, TIAN L. Survey of key technologies for networking in air-connected networks for the low-altitude economy[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition)202436(4): 619-632 (in Chinese).
[38] 鞠宏浩, 程楷钧, 邓彩连, 等. 无人机空地网络研究综述[J]. 西南交通大学学报202459(4): 877-889.
  JU H H, CHENG K J, DENG C L, et al. A survey on air-ground networks of unmanned aerial vehicles?[J]. Journal of Southwest Jiaotong University202459(4): 877-889 (in Chinese).
[39] STOUFFER L V, COTTON W B, DEANGELIS R A. Reliable, secure, and scalable communications, navigation, and surveillance (CNS) options for urban air mobility (UAM): Glenn Research Center-20205006661[R]. Washington, D.C.: NASA Glenn Research Center, 2020.
[40] 唐毅, 王征, 谢志明, 等. 基于现代通信网络的无人机空中管制技术?[J]. 数字技术与应用202240(2): 16-18, 35.
  TANG Y, WANG Z, XIE Z M, et al. Air traffic control technology of UAV based on modern communication network?[J]. Digital Technology & Application202240(2): 16-18, 35 (in Chinese).
[41] SHENG Y Y, LIU H Y, LI J B, et al. UAV autonomous navigation based on deep reinforcement learning in highly dynamic and high-density environments?[J]. Drones20248(9): 516.
[42] 李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报202020(4): 35-54.
  LI C L, QU W Q, LI Y D, et al. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft?[J]. Journal of Traffic and Transportation Engineering202020(4): 35-54 (in Chinese).
[43] BUTT M Z, NASIR N A,? RASHID R B. A review of perception sensors, techniques, and hardware architectures for autonomous low-altitude UAVs in non-cooperative local obstacle avoidance[J]. Robotics and Autonomous Systems2024173: 104629.
[44] 许亚星, 覃莉茹, 陈海明, 等. 基于3D蒙特卡洛的TCAS告警下的碰撞风险评估[J]. 航空计算技术202454(3): 71-75.
  XU Y X, QIN L R, CHEN H M, et al. Collision risk assessment in TCAS warning situation based on 3D Monte-Carlo[J]. Aeronautical Computing Technique202454(3): 71-75 (in Chinese).
[45] 刘辛果. 飞行中交通冲突避免系统(TCAS)的触发与操作分析[J]. 中国科技信息2023(22): 59-61.
  LIU X G. Trigger and operation analysis of traffic collision avoidance system (TCAS) in flight?[J]. China Science and Technology Information2023(22): 59-61 (in Chinese).
[46] NZAMIO M J A M. 基于ADS-B数据的飞机TCAS冲突检测和决议[D]. 哈尔滨: 哈尔滨工程大学,2023. NZAMIOMJ A M. TCAS conflict detection and resolution in aircraft based on ADS-B data[D]. Harbin: Harbin Engineering University, 2023 (in Chinese).
[47] LIU Z X, CAI K Q, ZHU Y B. Civil unmanned aircraft system operation in national airspace: A survey from Air Navigation Service Provider perspective?[J]. Chinese Journal of Aeronautics202134(3): 200-224.
[48] YU X, ZHANG Y M. Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects?[J]. Progress in Aerospace Sciences201574: 152-166.
[49] LI X H, SAVKIN A V. Networked unmanned aerial vehicles for surveillance and monitoring: A survey[J]. Future Internet202113(7): 174.
[50] 边海龙, 高飞. 基于无线电信号监测的无人机管控技术分析[J]. 集成电路应用202441(1): 324-325.
  BIAN H L, GAO F. Analysis of unmanned aerial vehicle control technology based on radio signal monitoring[J]. Application of IC202441(1): 324-325 (in Chinese).
[51] WANG X Q. Collision avoidance flight trajectory tracking method of UAV based on multi sensor fusion[J]. International Journal of Reasoning-Based Intelligent Systems202416(2): 100-106.
[52] FANG Z X, SAVKIN A V. Strategies for optimized UAV surveillance in various tasks and scenarios: A review[J]. Drones20248(5): 193.
[53] CAO Z Y, CHEN G. Research on collaborative multi-UAV localization method based on combination navigation information[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science2024238(21): 10426-10438.
[54] HU J W, WANG T, ZHANG H Z, et al. A review of rule-based collision avoidance technology for autonomous UAV[J]. Science China Technological Sciences202366(9): 2481-2499.
[55] ALTURBEH H, WHIDBORNE J F. Visual flight rules-based collision avoidance systems for UAV flying in civil aerospace[J]. Robotics20209(1): 1-35.
[56] CHANDRAN I, GOPIKA R, ANAGHA RAJENDRAN K P, et al. Heterogeneous multi-UAV ad-hoc networks for surveillance and wireless coverage in challenging terrain to enhance disaster missions?[J]. SN Computer Science20245(7): 814.
[57] ZHANG J. Aeronautical mobile communication: The evolution from narrowband to broadband?[J]. Engineering20217(4): 431-434.
[58] 季冠仲. 我国通用航空领域低空空中交通管理问题研究[D]. 济南: 山东财经大学, 2024: 5-26.
  JI G Z. Research on low altitude air traffic management in China’s general aviation industry?[D]. Jinan: Shandong University of Finance and Economics, 2024: 5-26 (in Chinese).
[59] 李庶中, 李越强, 李洁. 无人机感知与规避技术综述[J]. 现代导航201910(6): 445-449.
  LI S Z, LI Y Q, LI J. General overview of UAV sense and avoid technology[J]. Modern Navigation201910(6): 445-449 (in Chinese).
[60] 陈志杰, 朱永文, 刘杨. 基于数字化空域系统的城市无人机管理对策研究[J]. 中国民航大学学报202341(3): 8-12, 64.
  CHEN Z J, ZHU Y W, LIU Y. Management strategy of the urban UAV based on digital airspace system[J]. Journal of Civil Aviation University of China202341(3): 8-12, 64 (in Chinese).
[61] NOTH K R. Modeling and simulation of a ground based sense and avoid architecture for Unmanned Aircraft System operations?[C]?∥2011 Integrated Communications, Navigation, and Surveillance Conference Proceedings, 2011: 6-30.
[62] 郭东岳. 面向管制指挥的空中交通智能态势感知关键技术研究[D]. 成都: 四川大学, 2023.
  GUO D Y. Research on key technologies of intelligent situational awareness for air traffic control[D]. Chengdu: Sichuan University, 2023 (in Chinese).
[63] 童亮, 甘旭升, 张宏宏, 等. 考虑多因素影响的无人机碰撞风险评估[J]. 兵器装备工程学报202344(4): 282-289.
  TONG L, GAN X S, ZHANG H H, et al. Risk assessment of UAV collision considering multiple factors?[J]. Journal of Ordnance Equipment Engineering202344(4): 282-289 (in Chinese).
[64] KIM G S, LEE H, PARK S, et al. Joint frame rate adaptation and object recognition model selection for stabilized unmanned aerial vehicle surveillance[J]. ETRI Journal202345(5): 811-821.
[65] 白杨, 米禹丰, 刘云飞, 等. 基于多轨迹预测的飞机近地防撞技术研究[J]. 飞机设计202343(4): 61-65.
  BAI Y, MI Y F, LIU Y F, et al. Research on aircraft near-ground collision avoidance technology based on multi-trajectory prediction[J]. Aircraft Design202343(4): 61-65 (in Chinese).
[66] 支叶, 丁泽宇, 朱雨婷. 非隔离空域无人机防撞需求初探[J]. 计算机科学与应用20177(2): 117-123.
  ZHI Y, DING Z Y, ZHU Y T. Preliminary study on anti-collision requirements of unmanned aerial vehicles in non-isolated airspace[J]. Computer Science and Application20177(2): 117-123 (in Chinese).
[67] YEDILKHAN D, KYZYRKANOV A E, KUTPANOVA Z A, et al. Intelligent obstacle avoidance algorithm for safe urban monitoring with autonomous mobile drones?[J]. Journal of Electronic Science and Technology202422(4): 100277.
[68] 胡莘婷, 吴宇. 面向城市飞行安全的无人机离散型多路径规划方法[J]. 航空学报202142(6): 324383.
  HU X T, WU Y. Risk-based discrete multi-path planning method for UAVs in urban environments[J]. Acta Aeronautica et Astronautica Sinica202142(6): 324383 (in Chinese).
[69] 李丹. 有人机与无人机终端区空中碰撞风险评估方法研究[D]. 广汉: 中国民用航空飞行学院, 2024.
  LI D. Research on the risk assessment method of aerial collision between manned aircraft and UAV in the terminal area[D]. Guanghan: Civil Aviation Flight University of China, 2024 (in Chinese).
[70] 赵向程. 基于多点定位技术的机场场面监视研究[D]. 石家庄: 河北科技大学, 2021.
  ZHAO X C. Research on airport surface surveillance based on multipoint positioning technology?[D]. Shijiazhuang: Hebei University of Science and Technology, 2021 (in Chinese).
[71] 胡坤. 无人机与有人机混合运行下基于CNS性能的最小安全间距研究[D]. 广汉: 中国民用航空飞行学院, 2023.
  HU K. Research on the minimum safety distance based on CNS performance under the mixed operation of UAV and manned aircraft?[D]. Guanghan: Civil Aviation Flight University of China, 2023 (in Chinese).
[72] 邹启杰, 蒋亚军, 高兵, 等. 协作多智能体深度强化学习研究综述[J]. 航空兵器202229(6): 78-88.
  ZOU Q J, JIANG Y J, GAO B, et al. An overview of cooperative multi-agent deep reinforcement learning[J]. Aero Weaponry202229(6): 78-88 (in Chinese).
[73] 袁雷, 张子谦, 李立和, 等. 开放环境下的协作多智能体强化学习进展[J]. 中国科学: 信息科学202555(2): 217-268.
  YUAN L, ZHANG Z Q, LI L H, et al. Progress on cooperative multi-agent reinforcement learning in open environment[J]. Scientia Sinica (Informationis)202555(2): 217-268 (in Chinese).
[74] MA N, CAO Y F. Consensus-based distributed formation control for coordinated battle system of manned/unmanned aerial vehicles[J]. Transactions of the Institute of Measurement and Control202446(1): 3-14.
[75] LI Y, HAN W, WANG Y Q. Deep reinforcement learning with application to air confrontation intelligent decision-making of manned/unmanned aerial vehicle cooperative system?[J]. IEEE Access20208: 67887-67898.
[76] XU L, PAN X H, WU M. Analysis on manned/unmanned aerial vehicle cooperative operation in antisubmarine warfare?[J]. Chinese Journal of Ship Research201813(6): 154-159.
[77] LI B, WANG Y X, ZHANG Y B, et al. Cooperative task assignment algorithm of manned/unmanned aerial vehicle in uncertain environment[C]∥2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Piscataway: IEEE Press, 2017: 1119-1123.
[78] YASIN J N, MOHAMED S A S, HAGHBAYAN M H, et al. Unmanned aerial vehicles (UAVs): Collision avoidance systems and approaches?[J]. IEEE Access20208: 105139-105155.
[79] 魏麟, 杨济睿, 李秀易, 等. 面向融合运行的飞行员在环建模技术综述[J]. 交通运输工程学报202424(4): 208-227.
  WEI L, YANG J R, LI X Y, et al. Review on pilot-in-the-loop modeling techniques facing integrated operation[J]. Journal of Traffic and Transportation Engineering202424(4): 208-227 (in Chinese).
[80] 蔡开泉, 赵鹏. 空中交通自主间隔管控技术研究[J]. 南京航空航天大学学报202254(4): 688-699.
  CAI K Q, ZHAO P. Key technologies on air traffic self-separation management?[J]. Journal of Nanjing University of Aeronautics & Astronautics202254(4): 688-699 (in Chinese).
[81] MIN X. Urban air mobility conflict resolution: Centralized or decentralized[C]∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020.
[82] 刘一海. 基于空地协同的航空器典型特殊情况风险评估研究[D]. 广汉: 中国民用航空飞行学院, 2024.
  LIU Y H. Research on risk assessment of aircraft typical special situations based on air-ground cooperation?[D]. Guanghan: Civil Aviation Flight University of China, 2024 (in Chinese).
[83] 张阳, 程先峰, 刘岩. 空中交通基于四维轨迹运行概念及其应用[J]. 指挥信息系统与技术202011(5): 5-10.
  ZHANG Y, CHENG X F, LIU Y. Operational concept and application of four-dimensional trajectory based operation in air traffic?[J]. Command Information System and Technology202011(5): 5-10 (in Chinese).
[84] 丁强, 陶伟明. 多无人机协同四维航迹规划的改进的Tau-H策略[J]. 浙江大学学报(工学版)201852(7): 1398-1405, 1422.
  DING Q, TAO W M. Improved Tau-H strategy for four-dimensional cooperative route planning of multi-UAVs[J]. Journal of Zhejiang University (Engineering Science)201852(7): 1398-1405, 1422 (in Chinese).
[85] 吕维克, 晏振祥, 马玉莲, 等. 推进我国民航基于航迹运行的分析[J]. 民航管理2024(1): 60-64.
  LYU W K, YAN Z X, MA Y L, et al. An analysis of promoting TBO in Chinese civil aviation[J]. Civil Aviation Management2024(1): 60-64 (in Chinese).
[86] 褚鹏, 王军, 刘树光, 等. 基于人工智能技术的低空飞行器管控关键技术研究[J]. 航空兵器202330(2): 120-124.
  CHU P, WANG J, LIU S G, et al. Research on key technologies of low altitude vehicle management and control based on artificial intelligence technology?[J]. Aero Weaponry202330(2): 120-124 (in Chinese).
[87] 吴彦明. 数字孪生技术助力民航空中交通管理[J]. 通讯世界202431(9): 148-150.
  WU Y M. Digital twin technology helps civil aviation air traffic management[J]. Telecom World202431(9): 148-150 (in Chinese).
[88] 罗涛. 全阶段数字化管制服务发展现状与展望[J]. 民航管理2023(10): 64-67.
  LUO T. Current status and prospects of DATACOMM ATS[J]. Civil Aviation Management2023(10): 64-67 (in Chinese).
[89] 王艺霖. 数字孪生技术及其在空管领域的应用前景[J]. 民航学报20237(1): 60-64.
  WANG Y L. Digital twin and its application prospect in air traffic management?[J]. Journal of Civil Aviation20237(1): 60-64 (in Chinese).
[90] 苏维亚. 无人机辅助移动边缘计算中的计算卸载和资源调度[D]. 西安: 西安工业大学, 2024.
  SU W Y. UAV-assisted mobile edge computing compute offloading and resource scheduling?[D]. Xi’an: Xi’an Technological University, 2024 (in Chinese).
[91] 丁建立, 吴俣. 基于数字孪生的航班链延误动态预测模型[J]. 南京航空航天大学学报202355(5): 859-867.
  DING J L, WU Y. A dynamic prediction model of flight chain delay based on digital twin[J]. Journal of Nanjing University of Aeronautics & Astronautics202355(5): 859-867 (in Chinese).
[92] 於志文, 孙卓, 程岳, 等. 智能无人机集群协同感知计算研究综述[J]. 航空学报202445(20): 630912.
  YU Z W, SUN Z, CHENG Y, et al. A review of intelligent UAV swarm collaborative perception and computation[J]. Acta Aeronautica et Astronautica Sinica202445(20): 630912 (in Chinese).
[93] LI W G, SHI F M, ZHANG W Z, et al. A review of manned/unmanned aerial vehicle cooperative technology and application in U.S. military[J]. International Journal of Advanced Network, Monitoring and Controls20249(2): 100-107.
[94] DONG Z N, ZHANG M Y, LIU Y M. Control method of manned/unmanned aerial vehicle cooperative formation based on mission effectiveness[C]∥2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). Piscataway: IEEE Press, 2016: 881-888.
[95] SEDOV L, POLISHCHUK V, THIBAULT M, et al. Qualitative and quantitative risk assessment of urban airspace operations?[C]?∥SESAR Innovation Days (SID 2021), 2021.
[96] JARUS. JARUS guidelines on specific operations risk assessment (SORA)[R]. Joint Authorities for Rulemaking of Unmanned Systems, 2019.
[97] 郝维骞. 基于风险的未来低空无人机安全监管研究[D]. 天津: 中国民航大学, 2023.
  HAO W Q. A risk-based study on future safety supervision of low altitude UAVs[D]. Tianjin: Civil Aviation University of China, 2023 (in Chinese).
[98] LIN Y, DENG L J, CHEN Z M, et al. A real-time ATC safety monitoring framework using a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems202021(11): 4572-4581.
[99] 韩鹏, 赵嶷飞, 刘宏. 无人机地面撞击风险评估体系构建及趋势展望[J]. 中国民航大学学报202139(1): 40-47.
  HAN P, ZHAO Y F, LIU H. Assessment system construction and trend foresight of UAV ground impact risk[J]. Journal of Civil Aviation University of China202139(1): 40-47 (in Chinese).
[100] 陈艺君, 余莎莎, 张学军. 城市低空场景下无人机运行对地风险量化评估[J]. 北京航空航天大学学报202551(3): 806-815.
  CHEN Y J, YU S S, ZHANG X J. Ground risk quantitative assessment for UAV operations in urban low-altitude scenarios?[J]. Journal of Beijing University of Aeronautics and Astronautics202551(3): 806-815 (in Chinese).
[101] BARRADO C, BOYERO M, BRUCCULERI L, et al. U-space concept of operations: A key enabler for opening airspace to emerging low-altitude operations?[J]. Aerospace20207(3): 24.
[102] 韩磊. 有人机和无人机混合运行安全评估方法研究[D]. 天津: 中国民航大学, 2023.
  HAN L. Research on safety assessment method of mixed operation of manned aircraft and UAV?[D]. Tianjin: Civil Aviation University of China, 2023 (in Chinese).
[103] WASHINGTON A, CLOTHIER R A, WILLIAMS B P. A Bayesian approach to system safety assessment and compliance assessment for Unmanned Aircraft Systems[J]. Journal of Air Transport Management201762: 18-33.
[104] ALLOUCH A, KOUB?A A, KHALGUI M, et al. Qualitative and quantitative risk analysis and safety assessment of unmanned aerial vehicles missions over the Internet[J]. IEEE Access20197: 53392-53410.
[105] 羊钊, 李娜, 毛亿, 等. 低空空域无人机运行安全保障技术研究综述[J]. 西华大学学报(自然科学版)202443(1): 41-47.
  YANG Z, LI N, MAO Y, et al. A review of research on safety assurance technology for UAV operation in low-altitude airspace[J]. Journal of Xihua University (Natural Science Edition)202443(1): 41-47 (in Chinese).
[106] 沈映春. 低空经济的内涵、特征和运行模式[J]. 新疆师范大学学报(哲学社会科学版)202546(1): 108-117.
  SHEN Y C. Low-altitude economy: Definition, characteristics and operation modes[J]. Journal of Xinjiang Normal University (Philosophy and Social Sciences)202546(1): 108-117 (in Chinese).
Outlines

/