Articles

A safe scheduling model for eVTOL avionics systems for airworthiness requirements

  • Changxiao ZHAO ,
  • Yixuan SUN
Expand
  • 1.College of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China
    2.Key Laboratory of Civil Aircraft Airworthiness Technology,CAAC,Tianjin 300300,China
    3.Tianjin Aviation Equipment Safety and Airworthiness Technology Innovation Center,Tianjin 300300,China
E-mail: cxzhao@cauc.edu.cn

Received date: 2024-09-23

  Revised date: 2024-10-24

  Accepted date: 2025-01-22

  Online published: 2025-02-18

Abstract

The safety scheduling model of electric Vertical Take-Off and Landing (eVTOL) avionics system based on risk quantification scheme is proposed to solve the problem of risk aggregation in the existing performance-driven design of eVTOL aircraft avionics systems, which can impact flight safety. A two-layer scheduling scheme of eVTOL avionics system under time constraint and resource constraint is established. By analyzing the airworthiness regulationsof different eVTOL authorities, a description scheme of avionics functional safety critical degree based on expert score and entropy weight method is proposed. The Deep Deterministic Policy Gradient (DDPG) algorithm is used to solve the security criticality equilibrium problem. In the simulation experiment, the load balancing group and safety balancing group were set up, and the longitudinal comparison before and after optimization and the horizontal comparison between groups were carried out. The experimental results show that the proposed eVTOL safety scheduling model can improve the safety critical balance degree between regions by 30. 7%, and reduce the risk pooling deviation coefficient by 10. 8%. Compared with the load balancing group,9. 4% inter-zone safety criticality balance was obtained with 3. 6% load balancing loss. This model provides theoretical support for further integration and large-scale application of eVTOL avionics system.

Cite this article

Changxiao ZHAO , Yixuan SUN . A safe scheduling model for eVTOL avionics systems for airworthiness requirements[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(11) : 531252 -531252 . DOI: 10.7527/S1000-6893.2025.31252

References

[1] Federal Aviation Administration. Advanced air mobility (AAM) implementation plan: Near-term (innovate28) focus with an eye on the future of AAM[EB/OL]. (2023-07-18)[2024-08-04]. .
[2] Federal Aviation Administration. JA S4-1 airworthiness regulations[EB/OL]. (2024-03-08)[2024-08-04]. .
[3] 交通运输部. 国家综合立体交通网规划纲要[EB/OL]. (2021-02-25)[2024-08-04]. .
  Ministry of Transport of the People’s Republic of China. Outline of national comprehensive stereo transportation network planning[EB/OL]. (2021-02-25)[2024-08-04]. (in Chinese).
[4] 国家发展和改革委员会. 2024年国民经济和社会发展计划草案的报告[EB/OL]. (2024-03-13)[2024-08-04]. .
  National Development and Reform Commission of the People’s Republic of China. Report on the draft national economic and social development plan for 2024[EB/OL]. (2024-03-13)[2024-08-04]. (in Chinese).
[5] 工业和信息化部. 通用航空装备创新应用实施方案(2024-2030年)[EB/OL]. (2024-03-27)[2024-08-04]. .
  Ministry of Industry and Information Technology of the People’s Republic of China. Implementation program of general aviation equipment innovation and application (2024-2030)[EB/OL]. (2024-03-27)[2024-08-04]. (in Chinese).
[6] SU J C, HUANG H L, ZHANG H, et al. eVTOL performance analysis: A review from control perspectives[J]. IEEE Transactions on Intelligent Vehicles20249(5): 4877-4889.
[7] 李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报202020(4): 35-54.
  LI C L, QU W Q, LI Y D, et al. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering202020(4): 35-54 (in Chinese).
[8] 马小博. 先进无人作战飞机航空电子发展综述[J]. 航空计算技术202050(3): 122-125.
  MA X B. Advanced avionics development of military unmanned aerial vehicles[J]. Aeronautical Computing Technique202050(3): 122-125 (in Chinese).
[9] 王兴华, 王军强, 牛振中, 等. 无人机综合模块化航空电子体系架构技术研究[J]. 航空计算技术202151(5): 92-96.
  WANG X H, WANG J Q, NIU Z Z, et al. Research of integration and modularization for UAV avionics system[J]. Aeronautical Computing Technique202151(5): 92-96 (in Chinese).
[10] 何锋. 航空电子系统综合调度理论与方法[M]. 北京: 清华大学出版社, 2017: 2-7.
  HE F. Theory and approach to avionics system integrated scheduling?[M]. Beijing: Tsinghua University Press, 2017: 2-7 (in Chinese).
[11] 张旻, 武君胜, 崔西宁, 等. 机载多分区系统可调度性分析算法研究[J]. 西北工业大学学报202341(3): 557-567.
  ZHANG M, WU J S, CUI X N, et al. Research on schedulability analysis algorithm of airborne multi partition system[J]. Journal of Northwestern Polytechnical University202341(3): 557-567 (in Chinese).
[12] 何锋, 张立, 于思凡, 等. 基于网络演算的多窗口分区可调度性分析[J]. 航空学报202344(2): 326581.
  HE F, ZHANG L, YU S F, et al. Schedulability analysis for multi-window partition based on network calculus model[J]. Acta Aeronautica et Astronautica Sinica202344(2): 326581 (in Chinese).
[13] 曾清华, 杨志斌, 周勇. 基于约束规划的航空电子系统任务分配与调度方法[J]. 小型微型计算机系统202445(11): 2576-2585.
  ZENG Q H, YANG Z B, ZHOU Y. Constraint programming based task assignment and scheduling approach for integrated avionics systems[J]. Journal of Chinese Computer Systems202445(11): 2576-2585 (in Cinese).
[14] WANG Y S, LEI H, HACKETT R, et al. Safety assessment process optimization for integrated modular avionics[J]. IEEE Aerospace and Electronic Systems Magazine201934(11): 58-67.
[15] ZHANG C, SHI X M. Safety evaluation for upgraded avionics system[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences2016, E99.A(4): 849-852.
[16] GURU PRASAD P, DIGANTA D, CHUAN L, et al. A critique of reliability prediction techniques for avionics applications[J]. Chinese Journal of Aeronautics201831(1): 10-20.
[17] ARINC. Avionics application software standard interface:ARINC specification 653 [S]. Los Angeles: CRC Press, 2018.
[18] CHEN J C, DU C L, HAN P C. Scheduling independent partitions in integrated modular avionics systems[J]. PLoS One201611(12): e0168064.
[19] ZHOU T R, XIONG H G. Design of energy-efficient hierarchical scheduling for integrated modular avionics systems[J]. Chinese Journal of Aeronautics201225(1): 109-114.
[20] 张伟. 面向故障封闭的IMA系统资源分配方案研究[D]. 天津: 中国民航大学, 2023: 37-39.
  ZHANG W. Research on resource allocation scheme of IMA system oriented to fault closure?[D]. Tianjin: Civil Aviation University of China, 2023: 37-39 (in Chinese).
[21] EASA. Special condition for VTOL aircraft. [EB/OL]. (2024-01-10). [2024-08-04]. .
[22] 中国民用航空局. 亿航EH216-S型无人驾驶航空器系统专用条件[EB/OL]. (2022-02-09)[2024-08-04]. .
  Civil Aviation Administration of China. EH216-S unmanned aerial vehicle system-specific conditions[EB/OL]. (2022-02-09)[2024-08-04]. (in Chinese).
[23] 交通运输部. 正常类飞机适航规定[EB/OL]. (2022-05-06)[2024-08-04]. .
  Ministry of Transportation and Communications of the People’s Republic of China. Regulations on airworthiness of normal category aircraft[EB/OL]. (2022-05-06)[2024-08-04]. (in Chinese).
[24] 交通运输部. 运输类飞机适航标准[EB/OL]. (2016-06-17)[2024-08-04]. .
  Ministry of Transportation and Communications of the People’s Republic of China. Airworthiness standards for transport category aircraft[EB/OL]. (2016-06-17)[2024-08-04]. (in Chinese).
[25] 交通运输部. 民用无人驾驶航空器运行安全管理规则[EB/OL]. (2024-01-03)[2024-08-04]. .
  Ministry of Transportation of the People’s Republic of China. Civilian unmanned aerial vehicle operation safety management rules[EB/OL]. (2024-01-03)[2024-08-04]. (in Chinese).
[26] Federal Aviation Administration. AC 25.1309-1B-system design and analysis[EB/OL]. (2024-08-30)[2024-09-30]. .
[27] 张贵. 面向适航认证的综合化航电系统架构安全性评估方法研究[D]. 南京: 南京航空航天大学, 2016: 19-32.
  ZHANG G. Research on safety evaluation method of integrated avionics system architecture for airworthiness certification[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 19-32 (in Chinese).
[28] 刘伟韬, 刘云娟, 申建军. 基于模糊物元理论的深部开采底板突水安全性评价[J]. 山东科技大学学报(自然科学版)201433(3): 25-31.
  LIU W T, LIU Y J, SHEN J J. Safety evaluation of floor water inrush in deep mining based on the fuzzy matter-element theory[J]. Journal of Shandong University of Science and Technology (Natural Science)201433(3): 25-31 (in Chinese).
[29] 赵长啸, 戴骏, 董方正, 等. 机载时间敏感网络链路安全关键度均衡调度方法[J]. 航空学报202445(6): 328870.
  ZHAO C X, DAI J, DONG F Z, et al. Link safety criticality balanced scheduling for airborne time-sensitive network[J]. Acta Aeronautica et Astronautica Sinica202445(6): 328870 (in Chinese).
[30] 荘露, 陆中, 宋海靖, 等. 一种机载系统研制保证等级分配的优化方法[J]. 系统工程与电子技术202244(8): 2688-2698.
  LU, LU Z, SONG H J, et al. An optimization method for development assurance level assignment of airborne system[J]. Systems Engineering and Electronics202244(8): 2688-2698 (in Chinese).
[31] CHEN X F, ZHANG H G, WU C, et al. Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning[J]. IEEE Internet of Things Journal20196(3): 4005-4018.
[32] YAN J, BI S Z, ZHANG Y J A. Offloading and resource allocation with general task graph in mobile edge computing: A deep reinforcement learning approach[J]. IEEE Transactions on Wireless Communications202019(8): 5404-5419.
[33] CHEN Y, LIU Z Y, ZHANG Y C, et al. Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics202117(7): 4925-4934.
[34] FENG J, YU F R, PEI Q Q, et al. Cooperative computation offloading and resource allocation for blockchain-enabled mobile-edge computing: A deep reinforcement learning approach[J]. IEEE Internet of Things Journal20207(7): 6214-6228.
[35] 付宇鹏, 邓向阳, 朱子强, 等. 基于生成对抗近端策略优化的机动策略优化算法[J]. 海军航空大学学报202338(3): 257-261, 300.
  FU Y P, DENG X Y, ZHU Z Q, et al. GA-PPO based maneuvering policy optimization algorithm[J]. Journal of Naval Aviation University202338(3): 257-261, 300 (in Chinese).
[36] 罗庆, 张涛, 单鹏, 等. 基于改进Q学习的IMA系统重构蓝图生成方法[J]. 航空学报202142(8): 525792.
  LUO Q, ZHANG T, SHAN P, et al. Generating reconfiguration blueprints for IMA systems based on improved Q-learning[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525792 (in Chinese).
[37] 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报201841(1): 1-27.
  LIU Q, ZHAI J W, ZHANG ZC, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers201841(1): 1-27 (in Chinese).
[38] 赵长啸, 李道俊, 汪鹏辉, 等. 基于DDPG的综合化航电系统多分区任务分配优化方法[J]. 电讯技术202464(1): 58-66.
  ZHAO C X, LI D J, WANG P H, et al. A DDPG-based optimization method for multi-partition task assignment of IMA[J]. Telecommunication Engineering202464(1): 58-66 (in Chinese).
Outlines

/