ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Constructing in-time risk management capabilities for low-altitude aviation systems: Concepts, technologies, and challenges
Received date: 2024-11-01
Revised date: 2024-12-18
Accepted date: 2025-01-20
Online published: 2025-02-12
Supported by
The Ministry of Industry and Information Technology Project(23100002022102001)
With the rapid development of emerging aerial vehicles such as Unmanned Aircraft Systems (UASs) and electric Vertical Take-Off and Landing (eVTOL) aircraft, new concepts and systems for low-altitude operations, represented by Advanced Air Mobility (AAM) and UAS Traffic Management (UTM), pose unprecedented challenges to the low-altitude safety management capabilities of existing aviation systems. The future of low-altitude operations is expected to evolve towards high-density, on-demand responsiveness, and collaborative operations between manned and unmanned vehicles. In this context, traditional management approaches within the human-in-the-loop framework are inadequate to meet the airspace demands of low-altitude operations, necessitating development of a more timely and intelligent risk management capability supported by low-altitude air navigation systems. This paper first elucidates the fundamental concepts of low-altitude safety and proposes a safety management framework for future low-altitude operations, clearly defining the roles and responsibilities of various stakeholders. In response to the in-time and intelligent capability requirements for risk management in aviation systems driven by the development of the low-altitude economy, this paper reviews the evolution of risk management technologies and capabilities in aviation systems, synthesizes the current developmental demands, and outlines the representative research, current status, and limitations of key technologies. Based on existing gaps and present demands, this paper identifies core challenges faced by low-altitude aviation systems and proposes future directions for developing real-time risk management capabilities. Finally, to promote the safe and orderly development of low-altitude operation, this paper concludes by outlining the core challenges faced by low-altitude air navigation systems and providing directions for future development in constructing real-time risk management capabilities, offering guidance for research and construction of low-altitude air navigation system risk management capabilities.
Xuejun ZHANG , Chenglong LI , Zhiyuan ZHANG , Yuan ZHENG . Constructing in-time risk management capabilities for low-altitude aviation systems: Concepts, technologies, and challenges[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(11) : 531482 -531482 . DOI: 10.7527/S1000-6893.2025.31482
[1] | KOPARDEKAR P, RIOS J, PREVOT T, et al. Unmanned aircraft system traffic management (UTM) concept of operations[C]∥AIAA Aviation Forum and Exposition. 2016. |
[2] | FAA. Unmanned Aircraft System (UAS) Traffic Management (UTM) Concept of Operations V1.0[EB/OL]. (2018-05-23)[2025-03-12]. . |
[3] | FAA. Unmanned Aircraft System (UAS) Traffic Management (UTM) Concept of Operations V2.0[EB/OL]. (2020-03-02)[2025-03-12]. . |
[4] | FAA. NextGen Concept of Operations for Urban Air Mobility (UAM) V1.0[EB/OL]. (2020-06-26)[2025-03-12]. . |
[5] | FAA. Urban Air Mobility (UAM) Concept of Operations V2.0[EB/OL]. (2023-04-26)[2025-03-12]. . |
[6] | HILL B P, DECARME D, METCALFE M, et al. UAM vision concept of operations (ConOps) UAM maturity level (UML) 4: NASA/TM-20205011091[R]. Washington, D.C.: NASA, 2021. |
[7] | PATTERSON M D, ISAACSON D R, MENDONCA N L, et al. An initial concept for intermediate-state, passenger-carrying urban air mobility operations[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
[8] | National Academies of Sciences, Engineering, and Medicine. Advanced aerial mobility: A national blueprint[M]. Washington, D.C.: National Academies Press, 2020: 25646. |
[9] | FAA. Advanced Air Mobility (AAM) Implementation Plan [EB/OL]. (2023-07-18)[2025-03-12]. . |
[10] | SESAR. U-space Blueprint [EB/OL]. (2017-06-09) [2025-03-12]. . |
[11] | SESAR. U-space concept of operations (conops) fourth edition[EB/OL]. (2017-06-09)[2025-03-12]. . |
[12] | BARRADO C, BOYERO M, BRUCCULERI L, et al. U-space concept of operations: A key enabler for opening airspace to emerging low-altitude operations[J]. Aerospace, 2020, 7(3): 24. |
[13] | EASA. Acceptable level of safety performance (AloSP) implementation guidance within the European union framework[EB/OL]. (2021-05-31)[2025-03-12]. . |
[14] | BRITTON T. How to define acceptable level of safety (ALoS) in aviation SMS[EB/OL]. (2023-09-13)[2024-07-21]. . |
[15] | SKYBRARY. Acceptable level of safety | SKYbrary aviation safety[EB/OL]. (2024-07-17)[2024-07-21]. . |
[16] | 全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41(1): 023238. |
QUAN Q, LI G, BAI Y Q, et al. Low altitude UAV traffic management: An introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023238 (in Chinese). | |
[17] | 国务院办公厅. 关于促进通用航空业发展的指导意见[Z]. 北京: 国务院办公厅, 2016. |
General Office of the State Council. Guidance on promoting the development of general aviation industry[Z]. Beijing: General Office of the State Council, 2016 (in Chinese). | |
[18] | ICAO. Safety management manual fourth edition: Doc 9859[R]. Montréal: ICAO, 2018. |
[19] | 中国交通新闻网. 以改革创新为动力推动低空经济高质量发展[EB/OL]. (2024-07-29)[2025-01-30]. . |
China Transportation News Network. Driving high-quality development of the low-altitude economy with reform and innovation[EB/OL]. (2024-07-29)[2025-01-30]. (in Chinese). | |
[20] | 全国人民代表大会. 中华人民共和国安全生产法[Z]. 北京: 全国人民代表大会常务委员会, 2021. |
National People’s Congress. Law of the people’s repub-lic of China on production safety[Z]. Beijing: Standing Committee of the National People’s Congress, 2021 (in Chinese). | |
[21] | FAA. Safety risk management policy(FAA Order 8040.4C )[Z]. Washington, D.C.: FAA, 2023. |
[22] | ELLIS K K, KROIS P, KOELLING J H, et al. Defining services, functions, and capabilities for an advanced air mobility (AAM) in-time aviation safety management system (IASMS)[C]∥AIAA Aviation 2021 Forum. Reston: AIAA, 2021. |
[23] | ELLIS K, KROIS P, MAH R, et al. An approach for identifying IASMS services, functions, and capabilities from data sources[C]∥2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2021. |
[24] | YOUNG S D, QUACH C, GOEBEL K, et al. In-time safety assurance systems for emerging autonomous flight operations[C]∥2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2018. |
[25] | MBAYE S, JONES G, INFELD S I, et al. A model-based systems engineering evaluation of the evolution to an in-time aviation safety management system[C]∥AIAA Aviation 2022 Forum. Reston: AIAA, 2022. |
[26] | YOUNG S, ANCEL E, MOORE A, et al. Architecture and information requirements to assess and predict flight safety risks during highly autonomous urban flight operations: NASA/TM-2020-220440[R]. Washington, D.C.: NASA, 2020. |
[27] | 中国民用航空局. 2023年民航行业发展统计公报[EB/OL]. (2024-05-31) [2025-03-12]. . |
The Civil Aviation Administration of China. 2023 civil aviation industry development statistical bulletin [EB/OL]. (2024-05-31) [2025-03-12]. (in Chinese). | |
[28] | IATA. 2023 IATA annual safety report [Z]. Geneva: IATA, 2024. |
[29] | Joint Authorities for Rulemaking of Unmanned Systems. Safety assessment of remotely piloted aircraft systems: AMC RPAS.1309[EB/OL]. (2015-11-01) [2024-09-29]. . |
[30] | GALOTTI V P. The future air navigation system (FANS): Communications, navigation, surveillance-air traffic management (CNS/ATM)[M]. London: Routledge, 2019. |
[31] | 罗云飞. 新航行系统的广播式自动相关监视技术研究[D]. 成都: 电子科技大学, 2011. |
LUO Y F. Research on broadcast automatic correlation monitoring technology of new navigation system[D]. Chengdu: University of Electronic Science and Technology of China, 2011 (in Chinese). | |
[32] | 朱衍波. 空天地一体的民航空事系统发展与展望[Z]. 北京: 中国民航报社, 2023. |
ZHU Y B. Development and outlook of integrated air-ground-space civil aviation system[Z]. Beijing: CAAC News, 2023 (in Chinese). | |
[33] | 中国电子科技集团有限公司. 中国电科:2024年低空航行系统白皮书[EB/OL].(2024-08-29)[2025-03-12]. . |
China Electronics Technology Group Corporation. CETC: Low altitude flight system white paper 2024[EB/OL]. (2024-08-29)[2025-03-12]. (in Chinese). | |
[34] | 牛文生. 基于天地一体化信息网络的智能航空客运系统[J]. 航空学报, 2019, 40(1): 522415. |
NIU W S. Intelligent air passenger transportation system utilizing integrated space-ground information network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522415 (in Chinese). | |
[35] | 张学军, 谭元晧, 李雪缘, 等. 星基ADS-B系统及关键技术发展综述[J]. 北京航空航天大学学报, 2022, 48(9): 1589-1604. |
ZHANG X J, TAN Y H, LI X Y, et al. A review of development of space-based ADS-B system and its key technologies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1589-1604 (in Chinese). | |
[36] | 朱永文, 陈志杰, 蒲钒, 等. 数字化空域系统发展研究[J]. 中国工程科学, 2021, 23(3): 135-143. |
ZHU Y W, CHEN Z J, PU F, et al. Development of digital airspace system[J]. Strategic Study of CAE, 2021, 23(3): 135-143 (in Chinese). | |
[37] | 朱永文, 陈志杰, 蒲钒, 等. 空中交通智能化管理的科学与技术问题研究[J]. 中国工程科学, 2023, 25(5): 174-184. |
ZHU Y W, CHEN Z J, PU F, et al. Scientific and technological issues for the intelligent management of air traffic[J]. Strategic Study of CAE, 2023, 25(5): 174-184 (in Chinese). | |
[38] | BOLI T, RAVENHILL P. SESAR: The past, present, and future of European air traffic management research[J]. Engineering, 2021, 7(4): 448-451. |
[39] | POST J. The next generation air transportation system of the United States: Vision, accomplishments, and future directions[J]. Engineering, 2021, 7(4): 427-430. |
[40] | TIAN Y, WAN L L, CHEN C H, et al. Safety assessment method of performance-based navigation airspace planning[J]. Journal of Traffic and Transportation Engineering (English Edition), 2015, 2(5): 338-345. |
[41] | WHITING T. NASA Releases New Concept Image for Advanced Air Mobility [EB/OL]. (2021-03-29)[2025-03-26]. . |
[42] | PONCHAK D S, TEMPLIN F L, SHEFFIELD G, et al. Reliable and secure surveillance, communications and navigation (RSCAN) for unmanned air systems (UAS) in controlled airspace[C]∥2018 IEEE Aerospace Conference. Piscataway: IEEE Press, 2018. |
[43] | PONCHAK D S, TEMPLIN F L, SHEFFIELD G, et al. An implementation analysis of communications, navigation, and surveillance (CNS) Technologies for unmanned air systems (UAS)[CL]∥2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2018. |
[44] | PONCHAK D S, TEMPLIN F L, SHEFFIELD G, et al. Advancing the standards for unmanned air system communications, navigation and surveillance[C]∥2019 IEEE Aerospace Conference. Piscataway: IEEE Press, 2019. |
[45] | MARTIN L, WOLTER C, JOBE K, et al. TCL3 UTM (UAS traffic management) flight tests, airspace operations laboratory (AOL) report: NASA/TM-2019-220347[R]. Washington, D.C.: NASA, 2019. |
[46] | STOUFFER V L, COTTON W B, DEANGELIS R A, et al. Reliable, secure, and scalable communications, navigation, and surveillance (CNS) options for urban air mobility (UAM): NASA/TM-20205006661[R]. Washington, D.C.: NASA, 2020. |
[47] | WIGARD J, KOVáCS I Z, CLERGEAUD M. D3.3-Insights from simulation experiments on combined cellular satellite UAS communication: H2020-SESAR-2016-1[R]. Brussel: SESAR, 2019. |
[48] | S?RENSEN T B, AMORIM R, LOPEZ M. SESAR 2020-763601-D5.2 Report of first drone flight campaign: H2020-SESAR-2016-1[R]. Brussel: SESAR, 2020. |
[49] | AMORIM R, NGUYEN H, WIGARD J, et al. Measured uplink interference caused by aerial vehicles in LTE cellular networks[J]. IEEE Wireless Communications Letters, 2018, 7(6): 958-961. |
[50] | LOPEZ M, SORENSEN T B, MOGENSEN P, et al. Shadow fading spatial correlation analysis for aerial vehicles: Ray tracing vs. measurements[C]∥2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall). Piscataway: IEEE Press, 2019. |
[51] | BUCUR M, SORENSEN T, AMORIM R, et al. Validation of large-scale propagation characteristics for UAVs within urban environment[C]∥2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall). Piscataway: IEEE Press, 2019. |
[52] | DE AMORIM R M, WIGARD J, KOVACS I Z, et al. Enabling cellular communication for aerial vehicles: Providing reliability for future applications[J]. IEEE Vehicular Technology Magazine, 2020, 15(2): 129-135. |
[53] | AMORIM R, KOVáCS I Z, WIGARD J, et al. Forecasting spectrum demand for UAVs served by dedicated allocation in cellular networks[C]∥2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW). Piscataway: IEEE Press, 2019: 1-6. |
[54] | NGUYEN H C, AMORIM R, WIGARD J, et al. How to ensure reliable connectivity for aerial vehicles over cellular networks[J]. IEEE Access, 2018, 6: 12304-12317. |
[55] | ORSINI C, D’AGOSTINO A, IANNI M, et al. ICARUS Concept Definition: State-Of-The-Art, Requirements, Gap Analysis: H2020-SESAR-2019-2[R]. Brussel: SESAR, 2020. |
[56] | ORSINI C, D’AGOSTINO A, TOMASELLO F, et al. Design and architecture of the ICARUS system & services: H2020-SESAR-2019-2[R]. Brussel: SESAR, 2020. |
[57] | MENNELLA A, LUISI G, GAGLIARDE G. ICARUS D5.2-Cockpit Simulator Architecture: H2020-SESAR-2019-2[R]. Brussel: SESAR, 2021. |
[58] | TERPESSI C, ONATE M, ORSINI C. ICARUS final project results report: H2020-SESAR-2015-1[R]. Brussel: SESAR, 2022. |
[59] | PIOT A, JAHANGIR M, CISEK K. SESAR 2020- 763719-conclusion and recommendations: H2020-SESAR-2016-1[R]. Brussel: SESAR, 2019. |
[60] | JAHANGIR M, BAKER C J. CLASS U-space drone test flight results for non-cooperative surveillance using an L-band 3-D staring radar[C]∥2019 20th International Radar Symposium (IRS). Piscataway: IEEE Press, 2019: 1-11. |
[61] | CISEK K, BREKKE E, JAHANGIR M, et al. Track-to-track data fusion for unmanned traffic management system[C]∥2019 IEEE Aerospace Conference. Piscataway: IEEE Press, 2019. |
[62] | SIM J, JAHANGIR M, FIORANELLI F, et al. Effective ground-truthing of supervised machine learning for drone classification[C]∥2019 International Radar Conference (RADAR). Piscataway: IEEE Press, 2019. |
[63] | 樊邦奎, 李云, 张瑞雨. 浅析低空智联网与无人机产业应用[J]. 地理科学进展, 2021, 40(9): 1441-1450. |
FAN B K, LI Y, ZHANG R Y. Initial analysis of low-altitude Internet of intelligences(IOI) and the applications of unmanned aerial vehicle industry[J]. Progress in Geography, 2021, 40(9): 1441-1450 (in Chinese). | |
[64] | 吴启晖, 董超, 贾子晔, 等. 低空智联网组网与控制理论方法[J]. 航空学报, 2024, 45(3): 028809. |
WU Q H, DONG C, JIA Z Y, et al. Networking and control mechanism for low-altitude intelligent networks[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 028809 (in Chinese). | |
[65] | 吴启晖. 面向低空经济的低空智联网[EB/OL]. (2024-06-28)[2024-10-21]. . |
WU Q H. Low-altitude intelligent network for the low-altitude economy[EB/OL]. (2024-06-28)[2024-10-21]. (in Chinese). | |
[66] | 吴媚, 宛俊余. 湖南建成全国首个覆盖全省低空空域监视网[N/OL]. 湖南日报, (2023-05-19)[2024-10-21] https:∥. |
WU M, WAN J Y. Hunan established the nation’s first province-wide low-altitude airspace surveillance network [N/OL]. DailyHunan, (2023-05-19)[2024-10-21]. https:∥ (in Chinese). | |
[67] | 湖南省通用航空发展有限公司. 北斗低空 闪耀三湘[N/OL]. 湖南机场报, (2023-12-06)[2024-10-21]. https:∥ |
HUNAN GENERAL AVIATION DEVELOPMENT CO., LTD. BeiDou shines in low-altitude across Hunan [N/OL]. Hunan Airport Journal, (2023-12-06)[2024-10-21]. https:∥ (in Chinese). | |
[68] | NG H K. Collaborative weather research and development for urban air mobility[C]∥FPAW 2022 Spring Meeting, 2022. |
[69] | BONIN T, JONES J, ENEA G, et al. Development of a weather capability for the urban air mobility airspace research roadmap[C]∥2023 Integrated Communication, Navigation and Surveillance Conference (ICNS). 2023. |
[70] | CHAO H, MAHESHWARI A, DELAURENTIS D, et al. Weather impact assessment for urban aerial trips in metropolitan areas[C]∥AIAA Aviation 2021 Forum. Reston: AIAA, 2021. |
[71] | PENSADO E A, PIEIRO G V, ESTéVEZ P D, et al. Towards enhancing the safety of advanced air mobility: automatic 3D inter-urban modelling for improved weather monitoring[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2024, X-4/W5-2024: 1-7. |
[72] | EASA. Specific Operations Risk Assessment (SORA) | EASA[EB/OL]. (2024-07-10)[2024-07-21]. . |
[73] | JARUS. JARUS guidelines on Specific Operations Risk Assessment (SORA) V2.5[EB/OL].(2024-05-13)[2025-03-12]. . |
[74] | ANCEL E, CAPRISTAN F M, FOSTER J V, et al. real-time risk assessment framework for unmanned aircraft system (UAS) traffic management (UTM) [C]∥17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017. |
[75] | ANCEL E, HELSEL T, HEINICH C M. Ground risk assessment service provider (GRASP) development effort as a supplemental data service provider (SDSP) for urban unmanned aircraft system (UAS) operations[C]∥2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2019. |
[76] | ANCEL E, CAPRISTAN F M, FOSTER J V, et al. In-time non-participant casualty risk assessment to support onboard decision making for autonomous unmanned aircraft[C]∥AIAA Aviation 2019 Forum. AIAA, 2019. |
[77] | SESAR. SESAR Joint Undertaking | U-space Air and Ground Risk modEls Enhancement-U-AGREE[EB/OL]. (2024-09-01)[2024-09-24]. . |
[78] | Commission European. U-space air and ground risk modEls enhancement[EB/OL]. (2024-07-08)[2025-01-02]. . |
[79] | OH S, YOON Y. Data-driven risk analysis of unmanned aircraft system operations considering spatiotemporal characteristics of population distribution[J]. Transportation Research Interdisciplinary Perspectives, 2022, 16: 100732. |
[80] | 王莉莉, 阳杰. 基于速度随机分布的低空空域小型无人机碰撞风险评估模型[J]. 交通信息与安全, 2022, 40(4): 64-70. |
WANG L L, YANG J. A collision risk model for small UAVs based on velocity random distribution in low-altitude airspace[J]. Journal of Transport Information and Safety, 2022, 40(4): 64-70 (in Chinese). | |
[81] | XUE M, KUO V H. A method of compliance for achieving target collision risk in UTM operations: NASA/TM-20240003151[R]. Washington, D.C.: NASA, 2024. |
[82] | BLOM H A P, JIANG C P, GRIMME W B A, et al. Third party risk modelling of Unmanned Aircraft System operations, with application to parcel delivery service[J]. Reliability Engineering & System Safety, 2021, 214: 107788. |
[83] | 钟罡, 励瑾, 张晓玮, 等. 物流无人机对地风险评估方法研究[J]. 交通运输系统工程与信息, 2022, 22(4): 246-254. |
ZHONG G, LI J, ZHANG X W, et al. A risk assessment method of logistics drones on ground[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(4): 246-254 (in Chinese). | |
[84] | BIJJAHALLI S, GARDI A, PONGSAKORNSATHIEN N, et al. A unified airspace risk management framework for UAS operations[J]. Drones, 2022, 6(7): 184. |
[85] | BANERJEE P, CORBETTA M, JARVIS K. Probability of obstacle collision for UAVs in presence of wind[C]∥AIAA Aviation 2022 Forum. Reston: AIAA, 2022. |
[86] | ZHANG N, LIU H, LOW K H. UAV Collision risk assessment in terminal restricted area by heatmap Representation[C]∥AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
[87] | JIAO Q Y, LIU Y S, ZHENG Z G, et al. Ground risk assessment for unmanned aircraft systems based on dynamic model[J]. Drones, 2022, 6(11): 324. |
[88] | ZHOU S Y, LIU Y, ZHANG X J, et al. Risk assessment and distribution estimation for UAV operations with accurate ground feature extraction based on a multi-layer method in urban areas[J]. Drones, 2024, 8(8): 399. |
[89] | SUN X T, HU Y, QIN Y C, et al. Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks[J]. Reliability Engineering & System Safety, 2024, 248: 110185. |
[90] | 耿增显, 陈俊宇. 基于模糊贝叶斯网络的低空无人机运行风险评估[J]. 中国安全科学学报, 2024, 34(8): 53-60. |
GENG Z X, CHEN J Y. Risk assessment of low-altitude unmanned aerial vehicle operation based on fuzzy Bayesian network[J]. China Safety Science Journal, 2024, 34(8): 53-60 (in Chinese). | |
[91] | HAN P, YANG X Y, ZHAO Y F, et al. Quantitative ground risk assessment for urban logistical unmanned aerial vehicle (UAV) based on Bayesian network[J]. Sustainability, 2022, 14(9): 5733. |
[92] | JANG D S, IPPOLITO C A, SANKARARAMAN S, et al. Concepts of airspace structures and system analysis for UAS traffic flows for urban areas[C]∥AIAA Information Systems-AIAA Infotech@ Aerospace. Reston: AIAA, 2017. |
[93] | CHENG A W, WITZBERGER K E, ISAACSON D R, et al. National campaign (NC)-1 strategic conflict management simulation (X4) final report: NASA/TM-2022-0018159[R]. Washington, D.C.: NASA, 2022. |
[94] | ISAACSON D, CHENG A, WITZBERGER K. National campaign (NC)-1 strategic conflict management simulation (X4) community based rules: NASA/TM—2022-0015823[R]. Washington, D.C.: NASA, 2022. |
[95] | SESAR. SESAR Joint undertaking | DACUS-demand and capacity optimisation in U-space[EB/OL]. 2020 [2024-12-23]. . |
[96] | ESCALONILLA P S, JANISCH D, FORSTER C, et al. Towards a continuous demand and capacity balancing process for U-space[C]∥Proceedings of the SESAR Innovation Days 2020, 2020. |
[97] | JANISCH D, SANCHEZ-ESCALONILLA P, JIMENEZ M. UAV collision risk as part of u-space demand and capacity balancing[C]∥Proceedings of the SESAR Innovation Days 2021, 2021. |
[98] | BüDDEFELD M, CROOK I, EDUARDO TEOMITZI H, et al. A drone operation plan model to support the effect of uncertainty in advanced u-space capacity planning process[J]. Journal of Physics: Conference Series, 2023, 2526(1): 012091. |
[99] | 李樾, 韩维, 陈清阳, 等. 基于改进的速度障碍法的有人/无人机协同系统三维实时避障方法[J]. 西北工业大学学报, 2020, 38(2): 309-318. |
LI Y, HAN W, CHEN Q Y, et al. Real-time obstacle avoidance for manned/unmanned aircraft cooperative system based on improved velocity obstacle method[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 309-318 (in Chinese). | |
[100] | BEREZIAT D, CAFIERI S, VIDOSAVLJEVIC A. Metropolis Ⅱ: Centralised and strategical separation management of UAS in urban environment[C]∥12th SESAR innovation days. SESAR, 2022. |
[101] | ZHOU X, WEN X Y, WANG Z P, et al. Swarm of micro flying robots in the wild[J]. Science Robotics, 2022, 7(66): eabm5954. |
[102] | 谢华, 韩斯特, 尹嘉男, 等. 城市低空无人机飞行计划协同推演与优化调配方法[J]. 航空学报, 2024, 45(19): 330018. |
XIE H, HAN S T, YIN J N, et al. Cooperative deduction and optimal allocation method for urban low-altitude UAV flight plan[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 330018 (in Chinese). | |
[103] | GAO F, WANG L Q, ZHOU B Y, et al. Teach-repeat-replan: A complete and robust system for aggressive flight in complex environments[J]. IEEE Transactions on Robotics, 2020, 36(5): 1526-1545. |
[104] | KIM N, KIM I, SUK J, et al. Model predictive collision avoidance and in-flight trajectory optimization considering UAM operation corridor[C]∥2024 International Conference on Control, Automation and Diagnosis (ICCAD). 2024. |
[105] | 王祝, 张梦通, 张振鹏, 等. 基于多指标动态优先级的无人机协同路径规划[J]. 航空学报, 2024, 45(4): 328816. |
WANG Z, ZHANG M T, ZHANG Z P, et al. Multi-UAV cooperative path planning based on multi-index dynamic priority[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328816 (in Chinese). | |
[106] | HUANG C, PETRUNIN I, TSOURDOS A. Strategic conflict management for performance-based urban air mobility operations with multi-agent reinforcement learning[C]∥2022 International Conference on Unmanned Aircraft Systems (ICUAS), 2022. |
[107] | ISUFAJ R, OMERI M, PIERA M A. Multi-UAV conflict resolution with graph convolutional reinforcement learning[J]. Applied Sciences, 2022, 12(2): 610. |
[108] | HUANG C, PETRUNIN I, TSOURDOS A. Strategic conflict management using recurrent multi-agent reinforcement learning for urban air mobility operations considering uncertainties[J]. Journal of Intelligent & Robotic Systems, 2023, 107(2): 20. |
[109] | JANG K, PANT Y V, RODIONOVA A, et al. Learning-to-Fly RL: Reinforcement learning-based collision avoidance for scalable urban air mobility[C]∥2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), 2020. |
[110] | LI C L, GU W Y, ZHENG Y, et al. An ETA-based tactical conflict resolution method for air logistics transportation[J]. Drones, 2023, 7(5): 334. |
[111] | VAN NGUYEN L, PHUNG M D, HA Q P. Game theory-based optimal cooperative path planning for multiple UAVs[J]. IEEE Access, 2022, 10: 108034-108045. |
[112] | DENIZ M, ZHAO L, WAN Y, et al. Game-theoretic decision-making and payoff design for UAV collision avoidance in a three-dimensional airspace[J]. Unmanned Systems, 2024, 12(3): 499-509. |
[113] | HUANG Y, TANG J, LAO S Y. Cooperative multi-UAV collision avoidance based on a complex network[J]. Applied Sciences, 2019, 9(19): 3943. |
[114] | YANG X X, WEI P. Autonomous free flight operations in urban air mobility with computational guidance and collision avoidance[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 5962-5975. |
[115] | GHEORGHISOR I, CHEN A, GLOBUS L, et al. Reliable 4G/5G-based communications in the national airspace: A UAS C2 use case[C]∥2020 Integrated Communications Navigation and Surveillance Conference (ICNS). 2020. |
[116] | SHRESTHA R, BAJRACHARYA R, KIM S. 6G enabled unmanned aerial vehicle traffic management: A perspective[J]. IEEE Access, 2021, 9: 91119-91136. |
[117] | JEPSEN J H, MADER A R, ANDREASEN T D, et al. Investigating the applicability of LTE-M for network identification of unmanned aerial systems in U-space[C]∥2023 International Conference on Unmanned Aircraft Systems (ICUAS), 2023. |
[118] | NAEEM F, GOLLNICK V, SCHMITT C. 5G-enabled architectural imperatives and guidance for urban air mobility: Enhancing communication, navigation, and surveillance[C]∥AIAA Aviation Forum and Ascend 2024. Reston: AIAA, 2024. |
[119] | 曹正阳, 张冰, 白屹轩, 等. GNSS/INS/VNS组合定位信息融合的多无人机协同导航方法[J]. 兵工学报, 2023, 44(S2): 157-166. |
CAO Z Y, ZHANG B, BAI Y X, et al. Multi-UAV cooperative navigation method based on GNSS/INS/VNS combined positioning information fusion[J]. Acta Armamentarii, 2023, 44(S2): 157-166 (in Chinese). | |
[120] | BIJJAHALLI S, SABATINI R, GARDI A. Advances in intelligent and autonomous navigation systems for small UAS[J]. Progress in Aerospace Sciences, 2020, 115: 100617. |
[121] | YE S, WAN Z, ZENG L, et al. A vision-based navigation method for eVTOL final approach in urban air mobility(UAM)[C]∥2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI), 2020. |
[122] | KRAMMER C, SCHERER S, MISHRA C, et al. Concept for a vision-augmented automatic landing system for VTOL aircraft[C]∥AIAA Aviation 2021 Forum. Reston: AIAA, 2021. |
[123] | MICCIO E, VENERUSO P, OPROMOLLA R, et al. Vision-aided navigation for UAM approach to vertiports with multiple landing pads[C]∥2024 International Conference on Unmanned Aircraft Systems (ICUAS). 2024. |
[124] | 中国民用航空局. 民用微轻小型无人驾驶航空器运行识别最低性能要求(试行)[EB/OL]. (2024-01-16 )[2025-03-12]. https:∥. |
The Civil Aviation Administration of China. Minimum performance requirements for operation identification of civil micro-light small unmanned aerial vehicles (Trial)[EB/OL].(2024-01-16)[2025-03-12]. (in Chinese). | |
[125] | BI K F, XIE L X, ZHANG H H, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619(7970): 533-538. |
[126] | BLASCH E, RAZ A K, SABATINI R, et al. Information fusion as an autonomy enabler for UAS traffic management (UTM)[C]∥Proceedings of the AIAA scitech forum. Reston: AIAA, 2021. |
[127] | JOHNSON M G, JUNG Y C, SZATKOWSKI G N, et al. Digital information platform (DIP) overview[C]∥NASA DIP RFI with airlines for america (A4A). Washington, D.C.: NASA, 2021. |
[128] | 顾文勇. 基于可解释机器学习的无人机避撞决策研究[D]. 广汉: 中国民用航空飞行学院, 2024. |
GU W Y. Research on UAV collision avoidance decision based on interpretable machine learning[D]. Guanghan: Civil Aviation Flight University of China, 2024 (in Chinese). |
/
〈 |
|
〉 |