special column

Airfoil parameterization method based on latent diffusion model

  • Ruitao ZHANG ,
  • Cong WANG ,
  • Jun TAO ,
  • Liyue WANG ,
  • Gang SUN
Expand
  • Department of Aeronautics and Astronautics,Fudan University,Shanghai 200433,China

Received date: 2024-09-10

  Revised date: 2024-12-11

  Accepted date: 2025-01-14

  Online published: 2025-02-10

Abstract

To alleviate the curse of dimensionality problem in aerodynamic shape optimization and improve the representation capability as well as optimization efficiency of parameterization method, this paper proposes a new airfoil parameterization method named Latent Diffusion Model (LDM), which combines Class-Shape Transformation (CST), Autoencoder (AE), and Denoising Diffusion Implicit Model (DDIM). The geometric quality of the airfoils generated by the proposed method is analyzed. Then, the effect of different latent dimensions on the distribution of the samples is examined. Next, the fitting accuracy and the representational capability of LDM is compared with those of four different parameterization methods: CST-AE, Principal Component Analysis (PCA), Free Form Deformation (FFD), and CST. Finally, airfoil aerodynamic optimization is conducted to verify the performance of the LDM method. The results show that the LDM can generate smooth and acceptable airfoil samples. Compared with other parameterization methods, this method offers a more accurate description and stronger representation capability for airfoils. Additionally, the LDM demonstrates faster convergence and shorter optimization time. The optimized airfoil exhibits better aerodynamic performance and a more stable optimization process. In the future, this method has the potential to be extended to aerodynamic optimization for more complex shapes, such as wing segments, nacelles and fans.

Cite this article

Ruitao ZHANG , Cong WANG , Jun TAO , Liyue WANG , Gang SUN . Airfoil parameterization method based on latent diffusion model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(10) : 631180 -631180 . DOI: 10.7527/S1000-6893.2025.31180

References

1 BéZIER P. Mathematical and practical possibilities of unisurf[M]∥Computer Aided Geometric Design. Amsterdam: Elsevier, 1974: 127-152.
2 GORDON W J, RIESENFELD R F. B-spline curves and surfaces[M]∥Computer Aided Geometric Design. Amsterdam: Elsevier, 1974: 95-126.
3 PIEGL L, TILLER W. The NURBS book[M]. Germany: Springer, 1997.
4 HICKS R M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft197815(7): 407-412.
5 SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]∥Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1986: 151-160.
6 KULFAN B. A universal parametric geometry representation method-“CST”[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
7 SHAN S Q, WANG G G. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions[J]. Structural and Multidisciplinary Optimization201041(2): 219-241.
8 FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences200945(1-3): 50-79.
9 ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews20102(4): 433-459.
10 TAO J, SUN G, GUO L Q, et al. Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization[J]. Chinese Journal of Aeronautics202033(6): 1573-1588.
11 SCH?LKOPF B, SMOLA A, MüLLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation199810(5): 1299-1319.
12 KRAMER M A. Nonlinear principal component analysis using autoassociative neural networks[J]. AIChE Journal199137(2): 233-243.
13 KAPSOULIS D, TSIAKAS K, ASOUTI V, et al. The use of Kernel PCA in evolutionary optimization for computationally demanding engineering applications[C]∥ 2016 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway: IEEE Press, 2016: 1-8.
14 吴则良, 叶建川, 王江, 等. 基于深度自动编码器神经网络的飞行器翼型参数降维与优化设计[J]. 兵工学报202243(6): 1326-1336.
  WU Z L, YE J C, WANG J, et al. Parameter dimensionality reduction and optimal design of aircraft airfoil based on deep autoencoder neural network[J]. Acta Armamentarii202243(6): 1326-1336 (in Chinese).
15 邬晓敬. 气动外形优化设计中的不确定性及高维问题研究[D]. 西安: 西北工业大学, 2018.
  WU X J. Research on uncertainty and high dimensional problems in aerodynamic shape optimization design[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese).
16 余婧, 蒋安林, 刘亮, 等. 基于PCA降维的气动外形参数化方法[J]. 航空学报202445(10): 129125.
  YU J, JIANG A L, LIU L, et al. PCA aerodynamic geometry parametrization method[J]. Acta Aeronautica et Astronautica Sinica202445(10): 129125 (in Chinese).
17 WANG Y Y, SHIMADA K, BARATI FARIMANI A. Airfoil GAN: encoding and synthesizing airfoils for aerodynamic shape optimization[J]. Journal of Computational Design and Engineering202310(4): 1350-1362.
18 HO J, JAIN A, ABBEEL P, et al. Denoising diffusion probabilistic models[C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 6840-6851.
19 GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM202063(11): 139-144.
20 DHARIWAL P, NICHOL A. Diffusion models beat GANs on image synthesis[C]∥Proceedings of the 35th International Conference on Neural Information Processing Systems. New York: ACM, 2021: 8780-8794.
21 ARJOVSKY M, BOTTOU L. Towards Principled Methods for Training Generative Adversarial Networks[DB/OL]. arXiv preprint: 1701.0486, 2017.
22 WANG Y, BLEI D, CUNNINGHAM J P. Posterior collapse and latent variable non-identifiability[J]. Advances in Neural Information Processing Systems202134: 5443-5455.
23 MAZé F, AHMED F, MAZé F, et al. Diffusion models beat GANs on topology optimization[C]∥Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence. New York: ACM, 2023: 9108-9116.
24 SONG J, MENG C, ERMON S. Denoising diffusion implicit models[DB/OL]. arXiv preprint2010.0250, 2020.
25 KULFAN B, BUSSOLETTI J. “Fundamental” Parameteric geometry representations for aircraft component shapes[C]∥11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2006.
26 关晓辉, 宋笔锋, 李占科. CSRT与CST气动外形参数化方法对比[J]. 空气动力学学报201432(2): 228-234.
  GUAN X H, SONG B F, LI Z K. Comparison of the CSRT and the CST parameterization methods[J]. Acta Aerodynamica Sinica201432(2): 228-234 (in Chinese).
27 张德虎, 席胜, 田鼎. 典型翼型参数化方法的翼型外形控制能力评估[J]. 航空工程进展20145(3): 281-288, 295.
  ZHANG D H, XI S, TIAN D. Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances in Aeronautical Science and Engineering20145(3): 281-288, 295 (in Chinese).
28 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报2012(4): 625-633.
  GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronauticaet Astronautica Sinica2012(4): 625-633 (in Chinese).
29 尹强, 高正红. 外形参数化方法对气动优化过程的影响[J]. 科学技术与工程201212(14): 3394-3398.
  YIN Q, GAO Z H. Effect of shape parameterization on aerodynamic shape optimization[J]. Science Technology and Engineering201212(14): 3394-3398 (in Chinese).
30 TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science2000290(5500): 2319-2323.
31 RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[M]∥Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241.
32 NICHOL A Q, DHARIWAL P. Improved denoising diffusion probabilistic models[C]∥International conference on machine learning. Virtual Event: PMLR, 2021: 8162-8171.
33 CHEN W, CHIU K, FUGE M D. Airfoil design parameterization and optimization using Bézier generative adversarial networks[J]. AIAA Journal202058(11): 4723-4735.
34 GRETTON A, BORGWARDT K M, RASCH M J, et al. A kernel two-sample test[J]. The Journal of Machine Learning Research201213(1): 723-773.
35 MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics200042(1): 55-61.
Outlines

/