Articles

Urban low-altitude flight plan optimal scheduling based on complex network

  • Gang ZHONG ,
  • Junming HUA ,
  • Sen DU ,
  • Yupu LIU ,
  • Hao LIU ,
  • Honghai ZHANG
Expand
  • 1.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.College of Mathematics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
E-mail: zg1991@nuaa.edu.cn

Received date: 2024-11-01

  Revised date: 2024-12-31

  Accepted date: 2025-01-03

  Online published: 2025-01-10

Supported by

Joint Funds of the National Natural Science Foundation of China and Civil Aviation Administration of China Key Project(U2333214);China Postdoctoral Science Foundation(2023M741687);Fundamental Research Funds for the Central Universities(NS2023037)

Abstract

With the development of the low-altitude economy, Urban Air Mobility (UAM) confronts the challenges in risk management and efficiency due to dense flight operations. This study addresses the pre-flight phase of urban low-altitude Unmanned Aerial Vehicle (UAV) swarms, and introduces a two-stage optimal scheduling approach for flight plans utilizing complex network. Initially, considering the potential third-party risks of UAV flight, the four-dimensional trajectory for individual UAVs is pre-planned within a digital airspace grid environment to generate an initial four-dimensional flight plan for the UAV swarm. Subsequently, to address flight uncertainty, a conflict detection model is proposed to construct a complex network where flight plans are nodes and conflicts are edges. Important flight plans are identified by analyzing topological metrics of the complex network. Finally, an integrated flight plan optimal scheduling model is established, incorporating strategies such as ground holding, speed adjustment, and local re-routing. A two-stage optimization algorithm frame is developed to globally optimize key flight plans and then locally adjust remaining conflicts, and is solved based on the improved Fata morgana algorithm. Experimental results demonstrate that this method can significantly reduce or eliminate flight conflicts considering flight uncertainty, ensuring that delayed flight plans constitute no more than 3% of the total and increasing operational risk by no more than 1%. These findings offer technical support for urban low-altitude flight plan scheduling management, and are instrumental in fostering safe and orderly progression of urban air traffic.

Cite this article

Gang ZHONG , Junming HUA , Sen DU , Yupu LIU , Hao LIU , Honghai ZHANG . Urban low-altitude flight plan optimal scheduling based on complex network[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(11) : 531479 -531479 . DOI: 10.7527/S1000-6893.2025.31479

References

[1] 中华人民共和国国务院, 中央军委. 无人驾驶航空器飞行管理暂行条例[EB/OL]. (2023-06-28)[2024-11-20]. .
  The State Council of the People’s Republic of China, Central Military Commission of the People’s Republic of China. Interim regulation on the administration of the flight of unmanned aircraft?[EB/OL]. (2023-06-28)[2024-11-20]. (in Chinese).
[2] 中华人民共和国交通运输部. 民用无人驾驶航空器运行安全管理规则[EB/OL]. (2024-01-03)[2024-11-20]. .
  MOT. The safety management rules for the operation of civil unmanned aircraft[EB/OL]. (2024-01-03)[2024-11-20]. (in Chinese).
[3] 白春玉, 郭亚周, 刘小川, 等. 民用轻小型无人机碰撞安全特性研究进展[J]. 航空学报202243(6): 526832.
  BAI C Y, GUO Y Z, LIU X C, et al. Research progress of collision safety characteristics of civil light and small UAVs?[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526832 (in Chinese).
[4] FAA. UTM concept of operations version 2.0 (UTM ConOps v2.0)?[EB/OL]. (2022-8-16)[2023-12-10]. .
[5] WU P C, YANG X X, WEI P, et al. Safety assured online guidance with airborne separation for urban air mobi-lity operations in uncertain environments[J]. IEEE Transactions on Intelligent Transportation Systems202223(10): 19413-19427.
[6] PANG B Z, LOW K H, LV C. Adaptive conflict resolution for multi-UAV 4D routes optimization using stochastic fractal search algorithm[J]. Transportation Research Part C: Emerging Technologies2022139: 103666.
[7] 谢华, 苏方正, 尹嘉男, 等. 复杂低空无人机飞行冲突网络建模与精细管理[J]. 航空学报202344(18): 328226.
  XIE H, SU F Z, YIN J N, et al. Network modeling and refined management of UAV flight conflicts in complex low altitude airspace[J]. Acta Aeronautica et Astronautica Sinica202344(18): 328226 (in Chinese).
[8] DAI W, PANG B Z, LOW K H. Conflict-free four-dimensional path planning for urban air mobility considering airspace occupancy[J]. Aerospace Science and Technology2021119: 107154.
[9] TANG Y W, XU Y. Incorporating optimization in strategic conflict resolution for UAS traffic management[J]. IEEE Transactions on Intelligent Transportation Systems202324(11): 12393-12405.
[10] SANT'ANNA SOUZA W S, CONDé ROCHA MUR?A M. Simulation of strategic conflict management performance for advanced air mobility operations[C]?∥2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2023: 1-9.
[11] YANG J, YIN D, NIU Y F, et al. Cooperative conflict detection and resolution of civil unmanned aerial vehicles in metropolis[J]. Advances in Mechanical Engineering20168(6): 51195.
[12] JOVER J, BERMúDEZ A, CASADO R. A tactical conflict resolution proposal for U-space zu airspace vo-lumes[J]. Sensors202121(16): 5649.
[13] SALLAN J M, LORDAN O. Air transport networks and complex networks[M]?∥Air route networks through complex networks theory. Amsterdam: Elsevier, 2020: 1-15.
[14] 黄洋, 汤俊, 老松杨. 基于复杂网络的无人机飞行冲突解脱算法[J]. 航空学报201839(12): 322222.
  HUANG Y, TANG J, LAO S Y. UAV flight conflict resolution algorithm based on complex network[J]. Acta Aeronautica et Astronautica Sinica201839(12): 322222 (in Chinese).
[15] DING R, UJANG N, HAMID H B, et al. Application of complex networks theory in urban traffic network researches[J]. Networks and Spatial Economics201919(4): 1281-1317.
[16] 吴明功, 王泽坤, 甘旭升, 等. 基于复杂网络理论的关键飞行冲突点识别[J]. 西北工业大学学报202038(2): 279-287.
  WU M G, WANG Z K, GAN X S, et al. Identification of key flight conflict nodes based on complex network theory[J]. Journal of Northwestern Polytechnical University202038(2): 279-287 (in Chinese).
[17] WANG S, ZOU T Y, ZHAO W X, et al. Low-carbon mixed traffic route recommendation for community residents based on multilayer complex traffic network?[J]. IEEE Transactions on Sustainable Computing20249(3): 299-314.
[18] 史妙恬. 航空运输网络中不确定性因素对航班延误波及的影响研究[D]. 南京: 南京航空航天大学, 2017.
  SHI M T. Study on the influence of uncertain factors on flight delay spread in air transport network[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese).
[19] BAURANOV A, RAKAS J. Designing airspace for urban air mobility: a review of concepts and approaches[J]. Progress in Aerospace Sciences2021125: 100726.
[20] 中国民用航空局. 国家空域基础分类方法[EB/OL]. (2023-12-21)[2024-11-20]. .
  CAAC. National airspace classification method?[EB/OL]. (2023-12-21)[2024-11-20]. (in Chinese).
[21] 朱永文, 陈志杰, 蒲钒, 等. 数字化空域系统发展研究[J]. 中国工程科学202123(3): 135-143.
  ZHU Y W, CHEN Z J, PU F, et al. Development of digital airspace system?[J]. Strategic Study of CAE202123(3): 135-143 (in Chinese).
[22] DU S, ZHONG G, WANG F, et al. Safety risk modelling and assessment of civil unmanned aircraft system operations: a comprehensive review[J]. Drones20248(8): 354.
[23] 全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报202041(1): 023238.
  QUAN Q, LI G, BAI Y Q, et al. Low altitude UAV traffic management: an introductory overview and proposal?[J]. Acta Aeronautica et Astronautica Sinica202041(1): 023238 (in Chinese).
[24] PRIMATESTA S, RIZZO A, LA COUR-HARBO A. Ground risk map for unmanned aircraft in urban environments?[J]. Journal of Intelligent & Robotic Systems202097(3): 489-509.
[25] LA COUR-HARBO A. Quantifying risk of ground impact fatalities for small unmanned aircraft[J]. Journal of Intelligent & Robotic Systems201993(1): 367-384.
[26] 钟罡, 励瑾, 张晓玮, 等. 物流无人机对地风险评估方法研究[J]. 交通运输系统工程与信息202222(4): 246-254.
  ZHONG G, LI J, ZHANG X W, et al. A risk assessment method of logistics drones on ground[J]. Journal of Transportation Systems Engineering and Information Technology202222(4): 246-254 (in Chinese).
[27] DALAMAGKIDIS K, VALAVANIS K, PIEGL L. Evaluating the risk of unmanned aircraft ground impacts[C]?∥2008 16th Mediterranean Conference on Control and Automation. Ajaccio: IEEE Press, 2008: 4602249.
[28] PANG B Z, HU X T, POH Y Y, et al. Population density estimation for dynamic ground risk assessment of drone operations[C]?∥2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2023: 1-6.
[29] 张军峰, 葛腾腾, 陈强, 等. 离场航空器四维航迹预测及不确定性分析[J]. 西南交通大学学报201651(4): 800-806.
  ZHANG J F, GE T T, CHEN Q, et al. 4D trajectory prediction and uncertainty analysis for departure aircraft[J]. Journal of Southwest Jiaotong University201651(4): 800-806 (in Chinese).
[30] PANG B Z, LOW K H, DUONG V N. Chance-constrained UAM traffic flow optimization with fast disruption recovery under uncertain waypoint occupancy time[J]. Transportation Research Part C: Emerging Technologies2024161: 104547.
[31] PAGE L, BRIN S, WINOGRAD T. The PageRank citation ranking: bringing order to the Web?[EB/OL]. (1999-06-06)[2024-11-15]. .
[32] MORONE F, MAKSE H A. Influence maximization in complex networks through optimal percolation[J]. Nature2015524: 65-68.
[33] QI A L, ZHAO D, HEIDARI A A, et al. FATA: an efficient optimization method based on geophysics[J]. Neurocomputing2024607: 128289.
Outlines

/