Electronics and Electrical Engineering and Control

Overview of composite anti-disturbance control technology of advanced vehicles

  • Mou CHEN ,
  • Zhengguo HUANG ,
  • Yaohua SHEN ,
  • Fan LIU
Expand
  • College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

Received date: 2024-09-30

  Revised date: 2024-10-13

  Accepted date: 2024-12-25

  Online published: 2025-01-07

Supported by

National Natural Science Foundation of China(U23B2036);Hong Kong, Macao and Taiwan Science and Technology Cooperation Project of Special Foundation in Jiangsu Science and Technology Plan(BZ2023057)

Abstract

With the rapid development of information technology and artificial intelligence technology, advanced vehicles have been applied more and more widely in military and civilian fields. However, with the increasing complexity of the mission itself and the mission environment, the requirements for flight control are also increasing. Therefore, how to ensure the robustness and safety of flight control systems under the comprehensive influence of external disturbance is one of the research hot spots in recent years. Based on the existing research results at home and abroad, this paper summarizes the research status of composite anti-disturbance technology for advanced vehicles and outlined its future research and development direction. The design principle of the corresponding composite anti-disturbance control is analyzed mainly from the aspects of multi-disturbance observer composite control under multiple time-varying disturbances, composite anti-disturbance control under the combined action of time-varying disturbances and unmodeled dynamics, composite anti-disturbance control under input/output and state constraints, and composite anti-disturbance control based on disturbance coupling utilization. The key technologies that have been solved so far are reviewed. Finally, the future research directions of composite anti-disturbance control technology for advanced vehicles are discussed.

Cite this article

Mou CHEN , Zhengguo HUANG , Yaohua SHEN , Fan LIU . Overview of composite anti-disturbance control technology of advanced vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(6) : 531303 -531303 . DOI: 10.7527/S1000-6893.2024.31303

References

1 孙亚力. 俄乌双方战区防空反导作战研究[J]. 国防科技工业2023(4): 50-52.
  SUN Y L. Analysis and discussion on aerospace attack-defense operations in the Russia-Ukraine conflict[J]. Defence Science & Technology Industry2023(4): 50-52 (in Chinese).
2 武张静, 曹泽, 史禹龙, 等. 基于PX4的山火侦察固定翼无人机[J]. 自动化应用2022(5): 83-85.
  WU Z J, CAO Z, SHI Y L, et al. Mountain fire reconnaissance fixed-wing UAV based on PX4[J]. Automation Application2022(5): 83-85 (in Chinese).
3 于德水, 袁孝璟. 多旋翼无人机在特警实战领域的技术应用[J]. 中国公共安全2020(5): 138-140.
  YU D S, YUAN X J. Technical application of multi-rotor UAV in the field of special police actual combat[J]. China Public Security2020(5): 138-140 (in Chinese).
4 杨阳, 罗婷, 唐伟革, 等. 多旋翼无人机在医学救援领域的应用研究[J]. 医疗卫生装备201839(6): 91-95.
  YANG Y, LUO T, TANG W G, et al. Application of multi-rotor unmanned aerial vehicle in medical rescue[J]. Chinese Medical Equipment Journal201839(6): 91-95 (in Chinese).
5 王琛, 惠倩倩, 张帆. 水空跨域多模态共轴无人机设计[J]. 航空学报202344(21): 529047.
  WANG C, HUI Q Q, ZHANG F. Design of water-air cross-domain multi-mode coaxial UAV[J]. Acta Aeronautica et Astronautica Sinica202344(21): 529047 (in Chinese).
6 王雨辰, 林德福, 王伟, 等. 大跨域条件下的自适应滚转稳定容错控制方法[J]. 航空学报202142(3): 324368.
  WANG Y C, LIN D F, WANG W, et al. Adaptive fault-tolerance control method for roll stability during phase of large span flight[J]. Acta Aeronautica et Astronautica Sinica202142(3): 324368 (in Chinese).
7 刘伟, 陈谋, 花翔宇. 双四旋翼协同吊挂系统的非线性自适应控制[J/OL]. 控制理论与应用, (2024-04-19)[2024-09-30]. .
  LIU W, CHEN M, HUA X Y. Nonlinear adaptive control of dual quadrotor cooperative suspension system [J/OL]. Control Theory & Applications, (2024-04-19)[2024-09-30]. (in Chinese).
8 马梓元, 万茹, 龚华军, 等. 异构多智能体输出调节量化自适应跟踪控制[J]. 宇航学报202445(3): 469-477.
  MA Z Y, WAN R, GONG H J, et al. Heterogeneous multi-agent output adjustment quantization adaptive tracking control[J]. Journal of Astronautics202445(3): 469-477 (in Chinese).
9 古训, 王鹏博. 基于自适应容错的四旋翼无人机位姿跟踪与抗扰控制设计[J/OL]. 控制工程, (2024-01-25)[2024-09-30]. .
  GU X, WANG P B. Position tracking and disturbance rejection controller design of the quadrotor UAV based on the adaptive fault tolerance control strategy[J/OL]. China Industrial Economics, (2024-01-25)[2024-09-30]. (in Chinese).
10 梁洪基, 李俊丽, 朱晓英, 等. 基于快速自适应超螺旋滑模算法的四旋翼无人机轨迹跟踪控制[J/OL]. 控制工程??, (2024-9-23) [2024-09-30]. .
  LIANG H J, LI J L, ZHU X Y, et al. Trajectory tracking control of a quadrotor UAV based on a fast adaptive super-twisting sliding mode algorithm[J/OL]. Control Engineering of China, (2024-9-23)[2024-09-30]. (in Chinese).
11 张超凡, 董琦. 考虑输入饱和的固定翼无人机自适应增益滑模控制[J]. 航空学报202041(S1): 723755.
  ZHANG C F, DONG Q. Adaptive-gain sliding mode control of fixed-wing UAV considering input saturation[J]. Acta Aeronautica et Astronautica Sinica202041(S1): 723755 (in Chinese).
12 刘博, 孟中杰. 软管连接约束下的加油机/无人机编队跟踪控制[J]. 航空学报202344(17): 328210.
  LIU B, MENG Z J. Tanker/UAV formation tracking control with hose connection constraints[J]. Acta Aeronautica et Astronautica Sinica202344(17): 328210 (in Chinese).
13 李俊芳, 李峰, 吉月辉, 等. 四旋翼无人机轨迹稳定跟踪控制[J]. 控制与决策202035(2): 349-356.
  LI J F, LI F, JI Y H, et al. Trajectory stable tracking control of quadrotor UAV[J]. Control and Decision202035(2): 349-356 (in Chinese).
14 BOUZID Y, SIGUERDIDJANE H, BESTAOUI Y. Nonlinear internal model control applied to VTOL multi-rotors UAV[J]. Mechatronics201747: 49-66.
15 HUANG L J, PEI H L, CHENG Z H. System identification and improved internal model control for yaw of unmanned helicopter[J]. Asian Journal of Control202325(2): 1619-1638.
16 LEI X S, LU P, LIU F. The high performance control for small rotary-wing unmanned aircraft based on composite control method[J]. Transactions of the Institute of Measurement and Control201436(8): 1033-1040.
17 GUO L, CAO S Y. Anti-disturbance control theory for systems with multiple disturbances: A survey[J]. ISA Transactions201453(4): 846-849.
18 YONG K N, CHEN M, SHI Y, et al. Flexible performance-based control for nonlinear systems under strong external disturbances[J]. IEEE Transactions on Cybernetics202454(2): 762-775.
19 KAI J M, ALLIBERT G, HUA M D, et al. Nonlinear feedback control of quadrotors exploiting first-order drag effects[J]. IFAC-PapersOnLine201750(1): 8189-8195.
20 JIA J D, GUO K X, YU X, et al. Accurate high-maneuvering trajectory tracking for quadrotors: A drag utilization method[J]. IEEE Robotics and Automation Letters20227(3): 6966-6973.
21 GUO K X, JIA J D, YU X, et al. Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances[J]. Control Engineering Practice2020102: 104560.
22 胡伟, 万文章, 陈谋. 基于神经网络和干扰观测器的UAV自动着舰控制[J]. 航空学报202243(S1): 726963.
  HU W, WAN W Z, CHEN M. Neural network and disturbance observer based control for automatic carrier landing of UAV[J]. Acta Aeronautica et Astronautica Sinica202243(S1): 726963 (in Chinese).
23 YANG B, LI H Y, YAO D Y, et al. DO-based adaptive consensus control for multiple MUAVs with dynamic constraints[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202353(4): 2387-2398.
24 YU Z Q, ZHANG Y M, JIANG B, et al. Distributed adaptive fault-tolerant close formation flight control of multiple trailing fixed-wing UAVs?[J]. ISA Transactions2020106: 181-199.
25 LIU W, CHEN M, YONG K N. Flexible performance constraint-based control of a quadrotor UAV-suspended payload system under input saturation?[J]. International Journal of Systems Science202455(1): 130-146.
26 LU S M, CHEN M, LIU Y J, et al. SDO-based command filtered adaptive neural tracking control for MIMO nonlinear systems with time-varying constraints?[J]. IEEE Transactions on Cybernetics202454(9): 5054-5067.
27 SHEN Y H, CHEN M. Event-triggering-learning-based ADP control for post-stall pitching maneuver of aircraft[J]. IEEE Transactions on Cybernetics202454(1): 423-434.
28 CHEN M, XIONG S X, WU Q X. Tracking flight control of quadrotor based on disturbance observer[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202151(3): 1414-1423.
29 KRZYSZTOF ?, MADONSKI R. Cascade extended state observer for active disturbance rejection control applications under measurement noise?[J]. ISA Transactions2021109: 1-10.
30 HUANG Z G, CHEN M. Coordinated disturbance observer-based flight control of fixed-wing UAV?[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs202269(8): 3545-3549.
31 ZHOU T, CHEN Z S, JIAO J J. Quadrotor attitude control by improved snake optimizer based adaptive switching disturbance rejection approach[J]. Measurement Science and Technology202435(7): 076203.
32 WEI L L, CHEN M, SHI S. Dynamic event-triggered consensus cost-based switching control for UAV formation with disturbances[J]. IEEE Transactions on Intelligent Vehicles20249(2): 3531-3543.
33 陈志明, 牛康, 李磊, 等. 基于BSP-ANN的四旋翼无人机轨迹跟踪方法[J]. 航空学报201839(6): 321924.
  CHEN Z M, NIU K, LI L, et al. Trajectory tracking method for quadrotor UAV based on BSP-ANN?[J]. Acta Aeronautica et Astronautica Sinica201839(6): 321924 (in Chinese).
34 马振伟, 白浩, 陈洪波, 等. 四旋翼飞行器的RBF神经网络鲁棒自适应控制[J]. 北京航空航天大学学报202450(5): 1620-1628.
  MA Z W, BAI H, CHEN H B, et al. RBF neural network robust adaptive control of quadrotor aircraft?[J]. Journal of Beijing University of Aeronautics and Astronautics202450(5): 1620-1628 (in Chinese).
35 李成洋, 王伟, 耿宝魁, 等. 考虑输入饱和的空间飞行器姿态神经鲁棒自适应滑模控制[J]. 宇航学报202445(8): 1269-1280.
  LI C Y, WANG W, GENG B K, et al. Neural robust adaptive sliding mode method for spacecraft attitude control with input saturation?[J]. Journal of Astronautics202445(8): 1269-1280 (in Chinese).
36 张智超, 高太元, 张磊, 等. 基于径向基神经网络的气动热预测代理模型[J]. 航空学报202142(4): 524167.
  ZHANG Z C, GAO T Y, ZHANG L, et al. Aeroheating agent model based on radial basis function neural network?[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524167 (in Chinese).
37 RAZMI H, AFSHINFAR S. Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV[J]. Aerospace Science and Technology201991: 12-27.
38 GE S S, WANG C. Adaptive neural control of uncertain MIMO nonlinear systems[J]. IEEE Transactions on Neural Networks200415(3): 674-692.
39 PENG C, BAI Y, GONG X, et al. Modeling and robust backstepping sliding mode control with adaptive RBFNN for a novel coaxial eight-rotor UAV[J]. IEEE/CAA Journal of Automatica Sinica20152(1): 56-64.
40 PANG Q W, WANG D S, WU W, et al. Improved BP network based sliding model tracking control for a quadrotor UAV[J]. Journal of Control Engineering and Applied Informatics202224(2): 69-79.
41 刘晓东, 马飞, 张玉, 等. 基于BP神经网络的模型参考自适应姿态控制[J]. 航天控制201937(6): 3-7.
  LIU X D, MA F, ZHANG Y, et al. Model reference adaptive attitude control technology based on BP natural network[J]. Aerospace Control201937(6): 3-7 (in Chinese).
42 魏瑶, 刘志成, 蔡彬, 等. 基于深度循环双Q网络的无人机避障算法研究[J]. 西北工业大学学报202240(5): 970-979.
  WEI Y, LIU Z C, CAI B, et al. Study on UAV obstacle avoidance algorithm based on deep recurrent double Q network[J]. Journal of Northwestern Polytechnical University202240(5): 970-979 (in Chinese).
43 HAN H G, ZHANG L, HOU Y, et al. Nonlinear model predictive control based on a self-organizing recurrent neural network[J]. IEEE Transactions on Neural Networks and Learning Systems201627(2): 402-415.
44 QIN X H, ZHAO Z S, HUANG P K, et al. Multiple feedback recurrent neural network based super-twisting predefined-time nonsingular terminal sliding mode control for quad-rotor UAV?[J]. Aerospace Science and Technology2024151: 109282.
45 CHEN M, SHAO S Y, JIANG B. Adaptive neural control of uncertain nonlinear systems using disturbance observer[J]. IEEE Transactions on Cybernetics201747(10): 3110-3123.
46 CHEN M, GE S S. Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer[J]. IEEE Transactions on Cybernetics201343(4): 1213-1225.
47 XU B, SHOU Y X, LUO J, et al. Neural learning control of strict-feedback systems using disturbance observer[J]. IEEE Transactions on Neural Networks and Learning Systems201930(5): 1296-1307.
48 CHEN M, SHI P, LIM C C. Adaptive neural fault-tolerant control of a 3-DOF model helicopter system[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems201646(2): 260-270.
49 WAN M, CHEN M, YONG K N. Adaptive tracking control for an unmanned autonomous helicopter using neural network and disturbance observer[J]. Neurocomputing2022468: 296-305.
50 CHEN M, YAN K, WU Q X. Multiapproximator-based fault-tolerant tracking control for unmanned autonomous helicopter with input saturation[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202252(9): 5710-5722.
51 夏然龙, 邵书义, 吴庆宪. 风干扰下倾转旋翼飞行器直升机模态预设性能跟踪控制[J]. 无人系统技术20236(2): 71-80.
  XIA R L, SHAO S Y, WU Q X. Prescribed performance tracking control of helicopter mode of tiltrotor aircraft under wind disturbance?[J]. Unmanned Systems Technology20236(2): 71-80 (in Chinese).
52 CHEN M, ZHOU Y L, GUO W W. Robust tracking control for uncertain MIMO nonlinear systems with input saturation using RWNNDO?[J]. Neurocomputing2014144: 436-447.
53 YANG Q Y, CHEN M. Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity?[J]. Neurocomputing2016174: 780-789.
54 SHAO S Y, CHEN M, HOU J, et al. Event-triggered-based discrete-time neural control for a quadrotor UAV using disturbance observer?[J]. IEEE/ASME Transactions on Mechatronics202126(2): 689-699.
55 郭洪振, 陈谋. 基于预设性能的四旋翼无人机编队安全控制[J]. 航空学报202142(8): 525789.
  GUO H Z, CHEN M. Safety formation control of quadrotor UAVs based on prescribed performance?[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525789 (in Chinese).
56 LU X Y, WANG J Y, WANG Y H, et al. Neural network observer-based predefined-time attitude control for morphing hypersonic vehicles[J]. Aerospace Science and Technology2024152: 109333.
57 赵振华, 肖亮, 姜斌, 等. 基于扩张状态观测器的四旋翼无人机快速非奇异终端滑模轨迹跟踪控制[J]. 控制与决策202237(9): 2201-2210.
  ZHAO Z H, XIAO L, JIANG B, et al. Fast nonsingular terminal sliding mode trajectory tracking control of a quadrotor UAV based on extended state observers?[J]. Control and Decision202237(9): 2201-2210 (in Chinese).
58 吴云洁, 王建敏, 刘晓东, 等. 带有干扰观测器的高超声速飞行器滑模控制[J]. 控制理论与应用201532(6): 717-724.
  WU Y J, WANG J M, LIU X D, et al. Disturbance-observer-based sliding mode control for hypersonic flight vehicle[J]. Control Theory & Applications201532(6): 717-724 (in Chinese).
59 WANG J N, YUAN X, ZHU B. Geometric control for trajectory-tracking of a quadrotor UAV with suspended load[J]. IET Control Theory & Applications202216(12): 1271-1281.
60 CHEN W H, YANG J, GUO L, et al. Disturbance-observer-based control and related methods-An overview[J]. IEEE Transactions on Industrial Electronics201663(2): 1083-1095.
61 LI Y K, CHEN M, LI T, et al. Robust resilient control based on multi-approximator for the uncertain turbofan system with unmeasured states and disturbances?[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202151(10): 6040-6049.
62 CHEN M, LI Y K. Model reference resilient control for the helicopter with time-varying disturbance?[J]. International Journal of Robust and Nonlinear Control201929(15): 5095-5117.
63 LI Y K, CHEN M, LI T, et al. Tracking control for the helicopter with time-varying disturbance and input stochastic perturbation?[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2020234(4): 961-976.
64 潘世豪, 王婷, 张浩然, 等. 基于自适应干扰观测器的无人直升机模型参考跟踪控制[J]. 南京航空航天大学学报202355(6): 977-987.
  PAN S H, WANG T, ZHANG H R, et al. Reference model tracking control for unmanned aerial helicopters based on adaptive disturbance observer?[J]. Journal of Nanjing University of Aeronautics & Astronautics202355(6): 977-987 (in Chinese).
65 JIANG H, DUAN G R, HOU M Z. State and disturbance observer-based controller design for fully actuated systems?[J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers202471(11): 5261-5270.
66 LI Y K, LI D P, LIU B J, et al. Output feedback control for linear systems under measurement disturbances[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs202370(6): 2067-2071.
67 LI Y K, LIU D, LI D P, et al. Multisource disturbances rejection control for linear systems with unmeasured states under process and measurement disturbances?[J]. Journal of the Franklin Institute2024361(6): 106737.
68 CHEN M, GE S S. Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer?[J]. IEEE Transactions on Industrial Electronics201562(12): 7706-7716.
69 MIN H F, XU S Y, MA Q, et al. Composite-observer-based output-feedback control for nonlinear time-delay systems with input saturation and its application?[J]. IEEE Transactions on Industrial Electronics201865(7): 5856-5863.
70 MIN H F, XU S Y, FEI S M, et al. Observer-based NN control for nonlinear systems with full-state constraints and external disturbances[J]. IEEE Transactions on Neural Networks and Learning Systems202233(9): 4322-4331.
71 LIAN Y X, XIA J W, PARK J H, et al. Disturbance observer-based adaptive neural network output feedback control for uncertain nonlinear systems[J]. IEEE Transactions on Neural Networks and Learning Systems202334(10): 7260-7270.
72 PENG Z H, WANG D, WANG J. Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form?[J]. IEEE Transactions on Neural Networks and Learning Systems201728(9): 2156-2167.
73 WANG W, TONG S C. Adaptive fuzzy bounded control for consensus of multiple strict-feedback nonlinear systems[J]. IEEE Transactions on Cybernetics201848(2): 522-531.
74 XU B. Composite learning finite-time control with application to quadrotors[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems201848(10): 1806-1815.
75 杨杨, 刘奇东, 陈笛笛, 等. 基于预估器的一类多智能体系统神经动态面输出一致控制[J]. 控制理论与应用202138(8): 1197-1212.
  YANG Y, LIU Q D, CHEN D D, et al. Predictor-based neural dynamic surface output consensus control of a class of nonlinear multi-agent systems?[J]. Control Theory & Applications202138(8): 1197-1212 (in Chinese).
76 YUAN Y, DUAN H B. Adaptive learning control for a quadrotor unmanned aerial vehicle landing on a moving ship?[J]. IEEE Transactions on Industrial Informatics202420(1): 534-545.
77 YU Z Q, LIU Z X, ZHANG Y M, et al. Decentralized fault-tolerant cooperative control of multiple UAVs with prescribed attitude synchronization tracking performance under directed communication topology?[J]. Frontiers of Information Technology & Electronic Engineering201920(5): 685-700.
78 YU Z Q, LI J X, XU Y W, et al. Reinforcement learning-based fractional-order adaptive fault-tolerant formation control of networked fixed-wing UAVs with prescribed performance[J]. IEEE Transactions on Neural Networks and Learning Systems202435(3): 3365-3379.
79 彭程, 白越, 乔冠宇. 共轴八旋翼无人飞行器的偏航静态抗饱和补偿控制[J]. 机器人201840(2): 240-248.
  PENG C, BAI Y, QIAO G Y. Static anti-windup compensation control of yaw movement for a coaxial eight-rotor UAV?[J]. Robot201840(2): 240-248 (in Chinese).
80 张家旭, 周时莹, 赵健, 等. 基于非线性干扰观测器的车轮滑移率跟踪控制[J]. 华中科技大学学报(自然科学版)202048(10): 44-49.
  ZHANG J X, ZHOU S Y, ZHAO J, et al. Wheel slip rate tracking control based on nonlinear disturbance observer[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition)202048(10): 44-49 (in Chinese).
81 高阳, 吴文海, 王子健. 具有输入约束和输出噪声的不确定系统级联线性自抗扰控制[J]. 自动化学报202248(3): 843-852.
  GAO Y, WU W H, WANG Z J. Cascaded linear active disturbance rejection control for uncertain systems with input constraint and output noise[J]. Acta Automatica Sinica202248(3): 843-852 (in Chinese).
82 赖文馨, 李元龙, 林宗利. 基于系统输出的嵌套饱和系统抗饱和补偿器设计[J]. 控制理论与应用202340(2): 187-195.
  LAI W X, LI Y L, LIN Z L. Output-based anti-windup compensator designs for nested saturated systems?[J]. Control Theory & Applications202340(2): 187-195 (in Chinese).
83 NIE B W, LIU Z T, GUO T H, et al. Design and validation of disturbance rejection dynamic inverse control for a tailless aircraft in wind tunnel[J]. Applied Sciences202111(4): 1407.
84 杨青运, 陈谋. 具有输入饱和的近空间飞行器鲁棒控制[J]. 控制理论与应用201532(1): 18-28.
  YANG Q Y, CHEN M. Robust control for near space vehicles with input saturation[J]. Control Theory & Applications201532(1): 18-28 (in Chinese).
85 SUN R J, ZHOU Z, ZHU X P. Flight quality characteristics and observer-based anti-windup finite-time terminal sliding mode attitude control of aileron-free full-wing configuration UAV?[J]. Aerospace Science and Technology2021112: 106638.
86 SMITH J, SU J Y, LIU C J, et al. Disturbance observer based control with anti-windup applied to a small fixed wing UAV for disturbance rejection[J]. Journal of Intelligent & Robotic Systems201788(2): 329-346.
87 LI B M, CHEN M. Adaptive fuzzy anti-saturation tracking control for uncertain nonlinear systems with external disturbance?[J]. International Journal of Systems Science202455(6): 1243-1258.
88 宋晓娟, 王宏伟, 吕书锋. 输入饱和的充液航天器抗干扰有限时间滑模控制[J]. 控制与决策202136(5): 1078-1086.
  SONG X J, WANG H W, LYU S F. Anti-disturbance finite-time sliding mode control for liquid-filled spacecraft with input saturation?[J]. Control and Decision202136(5): 1078-1086 (in Chinese).
89 冯振欣, 郭建国, 周军. 高超声速飞行器多约束鲁棒姿态控制器设计[J]. 宇航学报201738(8): 839-846.
  FENG Z X, GUO J G, ZHOU J. Robust attitude control design for a hypersonic vehicle with multi-constraints[J]. Journal of Astronautics201738(8): 839-846 (in Chinese).
90 林海兵, 都延丽, 刘武, 等. 基于FTDO的RLV再入段鲁棒容错姿态控制[J]. 电光与控制202027(3): 46-51.
  LIN H B, DU Y L, LIU W, et al. Robust fault-tolerant attitude control for the RLV during reentry based on fixed-time disturbance observer[J]. Electronics Optics & Control202027(3): 46-51 (in Chinese).
91 CHEN M, REN B B, WU Q X, et al. Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer?[J]. Science China Information Sciences201558(7): 1-12.
92 SHAO S Y, YAN X H, CHEN M, et al. Event-triggered robust constrained control of uncertain nonlinear systems with input saturation based on self-learning disturbance observer?[J]. IEEE Transactions on Instrumentation and Measurement202473: 2517515.
93 丁岩, 于志刚. 考虑输入输出受限的无人机自适应滑模容错控制[J]. 系统工程与电子技术202042(10): 2340-2347.
  DING Y, YU Z G. Adaptive sliding mode fault tolerant control of UAV considering input and output constraints[J]. Systems Engineering and Electronics202042(10): 2340-2347 (in Chinese).
94 DAI P, FENG D Z, ZHAO J Q, et al. Asymmetric integral barrier Lyapunov function-based dynamic surface control of a state-constrained morphing waverider with anti-saturation compensator?[J]. Aerospace Science and Technology2022131: 107975.
95 胡伟, 雍可南, 陈谋. 基于干扰区间观测器的无人机预设性能着舰飞行控制[J]. 中国科学: 信息科学202252(9): 1711-1726.
  HU W, YONG K N, CHEN M. Disturbance interval observer-based carrier landing control of unmanned aerial vehicles using prescribed performance[J]. Scientia Sinica (Informationis)202252(9): 1711-1726 (in Chinese).
96 SHAO S Y, LIU N, LI C R, et al. Robust anti-swing control for unmanned helicopter slung-load system with prescribed performance[J]. Transactions of Nanjing University of Aeronautics and Astronautics202138(2): 193-205.
97 马浩翔, 陈谋, 吴庆宪. 具有输入输出约束的无人直升机预设性能安全跟踪控制[J]. 控制理论与应用202441(1): 39-48.
  MA H X, CHEN M, WU Q X. Prescribed performance safe tracking control for the unmanned helicopter with input and output constraints[J]. Control Theory & Applications202441(1): 39-48 (in Chinese).
98 WAN M, CHEN M, LUNGU M H. Adaptive sensor fault tolerant control with prescribed performance for unmanned autonomous helicopter based on neural networks[J]. Aircraft Engineering and Aerospace Technology202496(3): 417-429.
99 SHAO S Y, CHEN M. Adaptive neural discrete-time fractional-order control for a UAV system with prescribed performance using disturbance observer[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202151(2): 742-754.
100 曹承钰, 李繁飙, 廖宇新, 等. 高超声速变外形飞行器建模与固定时间预设性能控制[J]. 自动化学报202450(3): 486-504.
  CAO C Y, LI F B, LIAO Y X, et al. Modeling and fixed-time prescribed performance control for hypersonic morphing vehicle[J]. Acta Automatica Sinica202450(3): 486-504 (in Chinese).
101 WU Y, CHEN M, LI H Y, et al. Event-triggered-based adaptive NN cooperative control of six-rotor UAVs with finite-time prescribed performance?[J]. IEEE Transactions on Automation Science and Engineering202421(2): 1867-1877.
102 BUMROONGSRI P, KHEAWHOM S. An off-line robust MPC algorithm for uncertain polytopic discrete-time systems using polyhedral invariant sets?[J]. Journal of Process Control201222(6): 975-983.
103 马宇, 蔡远利. 基于非线性干扰观测器的高超声速飞行器离线预测控制方法[J]. 固体火箭技术201639(6): 825-832.
  MA Y, CAI Y L. Nonlinear-disturbance-observer-based offline model predictive control for hypersonic vehicles[J]. Journal of Solid Rocket Technology201639(6): 825-832 (in Chinese).
104 FU J, WANG L M, CHEN M. Invariant set based sliding mode control for near-space vehicles with attitude constraints[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2016230(5): 793-804.
105 MA Y, CAI Y L. Scheduled composite off-line output feedback model predictive control for a constrained hypersonic vehicle using polyhedral invariant sets[J]. Journal of Aerospace Engineering201831(4): 04018035.
106 LU S M, CHEN M, LIU Y J, et al. Adaptive NN tracking control for uncertain MIMO nonlinear system with time-varying state constraints and disturbances[J]. IEEE Transactions on Neural Networks and Learning Systems202334(10): 7309-7323.
107 孙伟杰, 乔雨晨, 彭云建. 基于障碍Lyapunov函数的未知控制方向非线性系统的约束鲁棒输出调节[J]. 控制理论与应用202340(9): 1696-1701.
  SUN W J, QIAO Y C, PENG Y J. Constraint robust output regulation for nonlinear systems with unknown control direction based on a barrier Lyapunov function[J]. Control Theory & Applications202340(9): 1696-1701 (in Chinese).
108 REN Y, CHEN M. Anti-swing control for a suspension cable system of a helicopter with cable swing constraint and unknown dead-zone?[J]. Neurocomputing2019356: 257-267.
109 邵茂森, 徐骋, 赵斌, 等. 全捷联光学导引头视场角及输入约束下制导控制一体化设计[J]. 光学 精密工程202129(6): 1291-1300.
  SHAO M S, XU C, ZHAO B, et al. Integrated guidance and control design considering angle of view constraint of strap-down optical seeker and input constraint[J]. Optics and Precision Engineering202129(6): 1291-1300 (in Chinese).
110 郝爽, 何玉鹏, 陈继尧, 等. 多蛇形机器人编队路径跟踪控制[J]. 电子与信息学报202446(7): 2981-2993.
  HAO S, HE Y P, CHEN J Y, et al. Formation path-following control of multi-snake robots?[J]. Journal of Electronics & Information Technology202446(7): 2981-2993 (in Chinese).
111 潘昌忠, 何广, 李智靖, 等. 不确定电液伺服系统的时变输出约束自适应滤波控制[J]. 北京航空航天大学学报202450(6): 1819-1828.
  PAN C Z, HE G, LI Z J, et al. Adaptive filtered control for uncertain electro-hydraulic servo systems with time-varying output constraints?[J]. Journal of Beijing University of Aeronautics and Astronautics202450(6): 1819-1828 (in Chinese).
112 宋梦实, 张帆, 黄攀峰. 位置约束下软式自主空中加油的抗干扰控制[J]. 航空学报202344(20): 629114.
  SONG M S, ZHANG F, HUANG P F. Anti-disturbance control of hose-drogue autonomous aerial refueling with position constraints?[J]. Acta Aeronautica et Astronautica Sinica202344(20): 629114 (in Chinese).
113 CAO C Y, WEI C S, LIAO Y X, et al. On novel trajectory tracking control of quadrotor UAV: A finite-time guaranteed performance approach?[J]. Journal of the Franklin Institute2022359(16): 8454-8483.
114 SHEN Z P, LI F, CAO X M, et al. Prescribed performance dynamic surface control for trajectory tracking of quadrotor UAV with uncertainties and input constraints[J]. International Journal of Control202194(11): 2945-2955.
115 陈浩岚, 王鹏, 汤国建. 变形飞行器输出误差受限与输入饱和控制方法[J]. 航空学报202344(15): 528762.
  CHEN H L, WANG P, TANG G J. Attitude control scheme for morphing vehicles with output error constraints and input saturation?[J]. Acta Aeronautica et Astronautica Sinica202344(15): 528762 (in Chinese).
116 YANG M, LI G L, WANG S Y, et al. Prescribed performance control scheme for fixed trim reentry vehicle with actuator input and power constraints[J]. Aerospace Science and Technology2020104: 105972.
117 YONG K N, CHEN M, SHI Y, et al. Flexible performance-based robust control for a class of nonlinear systems with input saturation?[J]. Automatica2020122: 109268.
118 马悦萌, 周荻, 邹昕光. 状态/输入约束下飞-推一体化的保性能安全控制[J]. 宇航学报202243(4): 496-507.
  MA Y M, ZHOU D, ZOU X G. Integrated flight-propulsion performance-guaranteed safety control with state/input constraints?[J]. Journal of Astronautics202243(4): 496-507 (in Chinese).
119 YAN X H, SHAO G W, YANG Q Y, et al. Adaptive robust tracking control for near space vehicles with multi-source disturbances and input?-output constraints[J]. Actuators202211(10): 273.
120 YUAN J C, ZHU M, GUO X, et al. Finite-time trajectory tracking control for a stratospheric airship with full-state constraint and disturbances[J]. Journal of the Franklin Institute2021358(2): 1499-1528.
121 FAN D D, LIU Q Y, ZHAO C L, et al. Flying in narrow spaces: prioritizing safety with disturbance-aware control?[J]. IEEE Robotics and Automation Letters20249(7): 6328-6335.
122 WEI P, CHAN S N, LEE S, et al. Mitigating ground effect on mini quadcopters with model reference adaptive control?[J]. International Journal of Intelligent Robotics and Applications20193(3): 283-297.
123 GUO Z Y, GUO J G, ZHOU J. Adaptive attitude tracking control for hypersonic reentry vehicles via sliding mode-based coupling effect-triggered approach[J]. Aerospace Science and Technology201878: 228-240.
124 GUO Z Y, MA Q W, GUO J G, et al. Performance-involved coupling effect-triggered scheme for robust attitude control of HRV[J]. IEEE/ASME Transactions on Mechatronics202025(3): 1288-1298.
125 FANG X, LIU F. Coupling and disturbance characterization based robust control for manned submersibles?[J]. Journal of the Franklin Institute2019356(15): 8468-8483.
126 GUO Z Y, GUO J G, ZHOU J, et al. Robust tracking for hypersonic reentry vehicles via disturbance estimation-triggered control?[J]. IEEE Transactions on Aerospace and Electronic Systems202056(2): 1279-1289.
127 SUN J L, PU Z Q, YI J Q. Conditional disturbance negation based active disturbance rejection control for hypersonic vehicles?[J]. Control Engineering Practice201984: 159-171.
128 HUANG Z G, CHEN M, SHI P. Disturbance utilization-based tracking control for the fixed-wing UAV with disturbance estimation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers202370(3): 1337-1349.
Outlines

/