Reviews

Key technical issues and innovation strategies for development of low-altitude economy

  • Wenxiao HU ,
  • Di MU ,
  • Zhi LI ,
  • Yingyi GUO ,
  • Xinmin CHEN
Expand
  • 1.School of Automation,Central South University,Changsha 410083,China
    2.Research Center in System Engineering for Special Aircrafts,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China
    3.Qianwan Institute of CNITECH,Ningbo 315336,China
E-mail: mudi@nimte.ac.cn

Received date: 2024-11-18

  Revised date: 2024-12-12

  Accepted date: 2024-12-20

  Online published: 2024-12-30

Supported by

Soft Science Research Project of Ningbo(2024R009);Natural Science Foundation of Ningbo(2024J054)

Abstract

The low-altitude economy, which is regarded as a strategic emerging industry, refers to comprehensive economic forms. Backed by national and regional supportive policies, China’s low-altitude economy is experiencing rapid expansion, and is becoming a powerful economic force. The underlying key technological challenges within the innovation chain of the low-altitude economy are identified, and the implementation paths for promoting integrated industrial development based on the innovation chain is explored. Then, the solution strategies of the issues faced by the enterprises and scientific research institutions involved in the industrial chain of low-altitude economy development can be obtained. The underlying key technological challenges of a certain Unmanned Aerial Vehicle (UAV) are examined, and its implementation schemes tailored to local conditions and industrial contexts are explored. Furthermore, with the aim of breaking through the key developmental bottlenecks and maximizing the efficiency of new industry growth points, perspectives on the development of entire low-altitude economy industrial chain are also discussed, which can offer references for establishing implementation paths for various stakeholders, including enterprises, universities, research institutes, and financial institutions, under the guidance of government policies.

Cite this article

Wenxiao HU , Di MU , Zhi LI , Yingyi GUO , Xinmin CHEN . Key technical issues and innovation strategies for development of low-altitude economy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(11) : 531539 -531539 . DOI: 10.7527/S1000-6893.2024.31539

References

[1] 郭辰阳, 敖万忠, 吕宜宏. 充分把握发展机遇,加快推进低空经济高质量发展[J]. 财经界2022(25): 36-38.
  GUO C Y, AO W Z, LV Y H. Fully grasp the development opportunities and accelerate the high-quality development of low-altitude economy[J]. Money China2022(25): 36-38 (in Chinese).
[2] 王珏, 李子成. 低空经济对新质生产力的作用机制与因素分析: 基于金融发展与企业集聚的调节效应[J]. 湖北经济学院学报202422(3): 86-100.
  WANG J, LI Z C. Analysis of the mechanisms and factors of low-altitude economy on new quality productivity: the moderating effect of financial development and business agglomeration?[J]. Journal of Hubei University of Economics202422(3): 86-100 (in Chinese).
[3] 代明, 梁意敏, 戴毅. 创新链解构研究[J]. 科技进步与对策200926(3): 157-160.
  DAI M, LIANG Y M, DAI Y. Innovation chain’s deconstruction research?[J]. Science & Technology Progress and Policy200926(3): 157-160 (in Chinese).
[4] 胡文龙. 论产业学院组织制度创新的逻辑: 三链融合的视角[J]. 高等工程教育研究2018(3): 13-17.
  HU W L. The logic of the organizational system innovation in industry college: in the perspective of three chain integration?[J]. Research in Higher Education of Engineering2018(3): 13-17 (in Chinese).
[5] 王文岩, 孙福全, 申强. 产学研合作模式的分类、特征及选择[J]. 中国科技论坛2008(5): 37-40.
  WANG W Y, SUN F Q, SHEN Q. The classification, characteristics and selection of cooperation mode in industry-university-research?[J]. Forum on Science and Technology in China2008(5): 37-40 (in Chinese).
[6] 吕薇, 金碚, 李平, 等. 以新促质,蓄势赋能: 新质生产力内涵特征、形成机理及实现进路[J]. 技术经济202443(3): 1-13.
  Lü W, JIN B, LI P, et al. New quality productive forces promote high-quality development: the connotation characteristics, formation mechanisms, and implementation approaches of new quality productive forces[J]. Journal of Technology Economics202443(3): 1-13 (in Chinese).
[7] 梁睿. 推动创新链产业链深度融合[N]. 经济日报, 2024-03-11(11).
[8] GUAN X M, SHI H X, XU D S, et al. The exploration and practice of low-altitude airspace flight service and traffic management in China[J]. Green Energy and Intelligent Transportation20243(2): 100149.
[9] 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报202445(5): 529937.
  DENG J H. Technical status and development of electric vertical take-off and landing aircraft?[J]. Acta Aeronautica et Astronautica Sinica202445(5): 529937 (in Chinese).
[10] AL-HILO A, SAMIR M, ASSI C, et al. UAV-assisted content delivery in intelligent transportation systems-joint trajectory planning and cache management?[J]. IEEE Transactions on Intelligent Transportation Systems202122(8): 5155-5167.
[11] JAVAID M, KHAN I H, SINGH R P, et al. Exploring contributions of drones towards industry 4.0?[J]. Industrial Robot: the International Journal of Robotics Research and Application202249(3): 476-490.
[12] AL-DOSARI K, DEIF A M, KUCUKVAR M, et al. Security supply chain using UAVs: Validation and development of a UAV-based model for Qatar’s mega sporting events[J]. Drones20237(9): 555.
[13] GHAFFAR M A, PENG L, ASLAM M U, et al. Vehicle-UAV integrated routing optimization problem for emergency delivery of medical supplies[J]. Electronics202413(18): 3650.
[14] 顾丽敏. 创新链驱动战略性新兴产业融合发展: 理论逻辑与机制设计[J]. 现代经济探讨2024(3): 80-86.
  GU L M. Innovation chain drives the integrated development of strategic emerging industries: Theoretical logic and mechanism design?[J]. Modern Economic Research2024(3): 80-86 (in Chinese).
[15] COLAJANNI G, SCIACCA D. Multi-layer 5G network slicing with UAVs: An optimization model[J]. Networks and Spatial Economics202323(3): 755-769.
[16] 李超. 垂直起降-2024年中国低空经济前景研究报告[EB/OL]. (2024-05-20)[2024-09-29]. .
  LI C. Vertical takeoff and landing-China’s low altitude economy prospect research report 2024[EB/OL]. (2024-05-20) [2024-09-29]. (in Chinese).
[17] BANASZAK Z, RADZKI G, NIELSEN I, et al. Proactive mission planning of unmanned aerial vehicle fleets used in offshore wind farm maintenance[J]. Applied Sciences202313(14): 8449.
[18] 黄鹤, 刘一恒, 赵熙, 等. 多层多源信息融合旋翼无人机测高算法[J]. 中国惯性技术学报201826(3): 316-322, 329.
  HUANG H, LIU Y H, ZHAO X, et al. Multi-layer multi-source information fusion algorithm for hovering UAV height measurement[J]. Journal of Chinese Inertial Technology201826(3): 316-322, 329 (in Chinese).
[19] MIRABILE A, PACHTER M. Pilot-assisted INS aiding using bearings-only measurements taken over time[J]. Navigation201764(2): 183-196.
[20] 朱云峰. 基于多源信息融合的无人机相对导航技术研究[D]. 南京: 南京航空航天大学, 2019.
  ZHU Y F. Research on UAV relative navigation technology based on multi-source information fusion[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese).
[21] 李超. 几种表面防护体系耐盐雾性能研究[J]. 装备环境工程202017(11): 103-107.
  LI C. Salt spray corrosion resistance of several surface protection systems?[J]. Equipment Environmental Engineering202017(11): 103-107 (in Chinese).
[22] 闫言, 吴康, 赵起锋, 等. 石墨烯在防腐涂料中的应用研究[J]. 涂层与防护202344(4): 35-39.
  YAN Y, WU K, ZHAO Q F, et al. Application of graphene in anticorrosive coatings[J]. Coating and Protection202344(4): 35-39 (in Chinese).
[23] 赵亚梅, 丁思奇, 曹婷婷, 等. 超疏水材料的制备及其在海洋领域中应用的研究进展[J]. 化工新型材料202250(1): 34-38.
  ZHAO Y M, DING S Q, CAO T T, et al. Preparation of superhydrophobic material and application in marine field[J]. New Chemical Materials202250(1): 34-38 (in Chinese).
[24] 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展?[J]. 复合材料学报202239(1): 23-38.
  LI J, JIAO W C, WANG Y C, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology?[J]. Acta Materiae Compositae Sinica202239(1): 23-38 (in Chinese).
[25] 刘诗鸾, 王云, 张高望. 变距旋翼无人机前飞气动性能分析与研究[J]. 科学技术与工程201414(31): 113-118.
  LIU S L, WANG Y, ZHANG G W. A new type of unmanned aerial vehicle on forwarding flight rotor aerodynamic performance analysis and research?[J]. Science Technology and Engineering201414(31): 113-118 (in Chinese).
[26] 李凡, 宋笔锋, 王琨, 等. 复合布局无人机平飞向悬停过渡阶段抗风性能分析[J]. 飞行力学202442(4): 41-47.
  LI F, SONG B F, WANG K, et al. Analysis of the wind disturbance rejection performance of the Quad-Plane during transition process from forward flight to hover?[J]. Flight Dynamics202442(4): 41-47 (in Chinese).
[27] 张航, 黄盈卓. 电动复合四旋翼无人机总体多学科优化设计方法[J]. 西安交通大学学报202357(8): 148-160.
  ZHANG H, HUANG Y Z. Multidisciplinary design optimization for an electric quadrotor fixed-wing hybrid unmanned air vehicle[J]. Journal of Xi’an Jiaotong University202357(8): 148-160 (in Chinese).
[28] 刘洋, 向锦武. 舰载直升机旋翼/机体耦合动力学稳定性[J]. 北京航空航天大学学报201339(4): 442-446.
  LIU Y, XIANG J W. Stability analysis of coupled rotor/fuselage system of shipboard helicopter?[J]. Journal of Beijing University of Aeronautics and Astronautics201339(4): 442-446 (in Chinese).
[29] 坎标, 龚柯健. 桁架式四旋翼无人机异形机架优化设计[J]. 机械设计与制造2024(11): 281-284.
  KAN B, GONG K J. Optimal design of novel-shaped frame of truss quad-rotor UAV?[J]. Machinery Design & Manufacture2024(11): 281-284 (in Chinese).
[30] 邹泽海, 郑恩辉, 丁凯, 等. 低空自主无人机数字孪生系统设计[J]. 现代电子技术202447(13): 123-128.
  ZOU Z H, ZHENG E H, DING K, et al. Design of digital twin system for low altitude autonomous UAV?[J]. Modern Electronics Technique202447(13): 123-128 (in Chinese).
[31] 卢元杰, 刘志敏, 孙智孝, 等. 基于模型的无人机系统架构综合评估方法[J]. 系统工程与电子技术202244(4): 1239-1245.
  LU Y J, LIU Z M, SUN Z X, et al. Model-based integrated evaluation of UAV system architecture?[J]. Systems Engineering and Electronics202244(4): 1239-1245 (in Chinese).
[32] 崔展博, 景博, 焦晓璇, 等. MBSE技术在飞控系统PHM中的应用研究[J]. 国外电子测量技术202241(3): 69-78.
  CUI Z B, JING B, JIAO X X, et al. Application research of MBSE technology in PHM of flight control system?[J]. Foreign Electronic Measurement Technology202241(3): 69-78 (in Chinese).
[33] 张宇宸, 段海滨, 魏晨. 基于深度强化学习的无人机集群数字孪生编队避障[J]. 工程科学学报202446(7): 1187-1196.
  ZHANG Y C, DUAN H B, WEI C. Digital twin-based obstacle avoidance method for unmanned aerial vehicle formation control using deep reinforcement learning?[J]. Chinese Journal of Engineering202446(7): 1187-1196 (in Chinese).
Outlines

/