Fluid Mechanics and Flight Mechanics

Flow feature and aero-optical effect for laser turret in transonic flow

  • Xiaotong TAN ,
  • Heyong XU
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an  710072,China
    2.National Key Laboratory of Aircraft Configuration Design,Xi’an  710072,China

Received date: 2024-11-04

  Revised date: 2024-11-25

  Accepted date: 2024-12-10

  Online published: 2024-12-12

Supported by

Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2025031)

Abstract

Improved Delayed Detached Eddy Simulation (IDDES) is used to calculate the flow field around the turret in transonic flow. The ray tracing method is employed to calculate the aero-optical effect at different beam emission angles. The aero-optical effect affected by different flow structures is analyzed. The results indicate that the pressure distribution on the turret exhibits two main characteristics: a symmetric “breathing mode” and an antisymmetric “shifting mode”. Their peak frequency are at 0.26–0.41 and 0.11–0.22, respectively, and these two main features exhibit coherence in the frequency. The drag force of the turret is primarily determined by shear layer oscillation, the lateral force is largely due to the shock wave jitter, and the axial force is influenced by both shock wave jitter and shear layer oscillation. The high-order Optical Path Difference (OPD) is relatively small with little fluctuation when the beam passes through the attached flow region. However, when the beam traverses the shock wave region and the turbulent wake zone, the high-order OPD is significantly large, with the time-averaged OPD being about four times that of the attached flow region, and the peak OPD being 13 times greater than that of the attached flow. The high-order OPD of the beam passing through the shear layer and turbulent wake vortices shows similar energy ratio using Proper Orthogonal Decomposition (POD) analysis. In contrast, the OPD energy of beams passing through the shock wave is more concentrated in the first five modes.

Cite this article

Xiaotong TAN , Heyong XU . Flow feature and aero-optical effect for laser turret in transonic flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(14) : 131493 -131493 . DOI: 10.7527/S1000-6893.2024.31493

References

[1] MOLER J L, LAMBERSON S E. Airborne laser (ABL): A legacy and a future for high-energy lasers[C]∥Gas and Chemical Lasers and Intense Beam Applications. 1998: 1-7.
[2] PERRAM G, MARCINIAK M, GODA M. High-energy laser weapons: Technology overview[C]∥Society of Photo-Optical Instrumentation Engineers Conference on Laser Technologies for Defense and Security. 2014: 1-25.
[3] LAMBERSON S, SCHALL H, ALVARADO O. Overview of airborne laser’s test program[C]∥2005 U.S. Air Force T&E Days. Reston: AIAA, 2005.
[4] JUMPER E J, GORDEYEV S, CAVALIERI D, et al. Airborne aero-optics laboratory-transonic (AAOL-T)[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
[5] MORRIDA J J, GORDEYEV S, JUMPER E J. Transonic flow dynamics over a hemisphere in flight[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
[6] 曹秋生, 路静, 柳建光, 等. 从SHiELD看机载激光武器的反导能力和技术挑战[J]. 中国电子科学研究院学报201914(5): 443-451.
  CAO Q S, LU J, LIU J G, et al. From SHiELD to look into the anti-missile capability and technical challenge of airborne laser weapon[J]. Journal of China Academy of Electronics and Information Technology201914(5): 443-451 (in Chinese).
[7] 严毅, 穆学桢, 张宁华, 等. 机载激光武器自卫防御应用研究与前景分析[J]. 航空制造技术202366(5): 107-113.
  YAN Y, MU X Z, ZHANG N H, et al. Application research and prospect analysis of airborne self-defense laser weapon?[J]. Aeronautical Manufacturing Technology202366(5): 107-113 (in Chinese).
[8] GORDEYEV S, JUMPER E. Fluid dynamics and aero-optics of turrets?[J]. Progress in Aerospace Sciences201046(8): 388-400.
[9] JUMPER E J, FITZGERALD E J. Recent advances in aero-optics?[J]. Progress in Aerospace Sciences200137(3): 299-339.
[10] GORDEYEV S, CRESS J A, SMITH A, et al. Aero-optical measurements in a subsonic, turbulent boundary layer with non-adiabatic walls?[J]. Physics of Fluids201527(4): 045110.
[11] WITTICH D, GORDEYEV S, JUMPER E. Revised scaling of optical distortions caused by compressible, subsonic turbulent boundary layers[C]∥38th Plasmadynamics and Lasers Conference. Reston: AIAA, 2007.
[12] TAN X T, XU H Y. Numerical investigation of aero-optical effects around the turret based on delayed detached eddy simulation and unsteady Reynolds averaged Navier-Stokes?[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2024(1): 20-43.
[13] REN X, YU H H, YAO X H, et al. Passive fluidic control on aero-optics of transonic flow over turrets with rough walls?[J]. Physics of Fluids202234(11): 115109.
[14] REN X, YU H H, YAO X H, et al. Shock boundary layer interaction and aero-optical effects in a transonic flow over hemisphere-on-cylinder turrets[J]. International Journal of Aerospace Engineering202222: 3397763.
[15] TAN X T, XU H Y, YIN K. Numerical investigation of optical distortions by turbulent wake and shock wave in the transonic flow?[J]. Physics of Fluids202436(3): 036115.
[16] MALKUS M J, FREDE M T, SHERER S E, et al. Effect of submergence on transonic flow around a hemisphere[J]. AIAA Journal202260(11): 6082-6096.
[17] TANG S X, LI J, WEI Z Y. A numerical investigation of the dominant characteristics of a transonic flow over a hemispherical turret[J]. International Journal of Computational Fluid Dynamics202236(5): 404-423.
[18] BERESH S J, HENFLING J F, SPILLERS R W, et al. Unsteady shock motion in a transonic flow over a wall-mounted hemisphere[C]∥29th International Symposium on Shock Waves 2. Cham: Springer International Publishing, 2015: 1241-1246.
[19] GORDEYEV S, VOROBIEV A, JUMPER E J, et al. Studies of flow topology around hemisphere at transonic speeds using time-resolved oil flow visualization?[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
[20] GRITSKEVICH M S, GARBARUK A V, SCHüTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow, Turbulence and Combustion201288(3): 431-449.
[21] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow200829(6): 1638-1649.
[22] 韩少强, 宋文萍, 韩忠华, 等. 高速共轴刚性旋翼非定常流动高精度数值模拟[J]. 航空学报202445(9): 529064.
  HAN S Q, SONG W P, HAN Z H, et al. High-accuracy numerical-simulation of unsteady flow over high-speed coaxial rigid rotors[J]. Acta Aeronautica et Astronautica Sinica202445(9): 529064 (in Chinese).
[23] 王跃, 宋文萍, 宋敏华, 等. 涡桨飞机有/无动力降落构型的气动噪声预测[J]. 航空学报202344(11): 126110.
  WANG Y, SONG W P, SONG M H, et al. Aero-acoustic prediction of turboprop models with and without propellers in landing configuration[J]. Acta Aeronautica et Astronautica Sinica202344(11): 126110 (in Chinese).
[24] 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报202142(4): 524689.
  ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524689 (in Chinese).
[25] 曹文博, 刘溢浪, 张伟伟. 基于降阶模型和梯度优化的流场加速收敛方法[J]. 航空学报202344(6): 127090.
  CAO W B, LIU Y L, ZHANG W W. Accelerated convergence method for fluid dynamics solvers based on reduced-order model and gradient optimization[J]. Acta Aeronautica et Astronautica Sinica202344(6): 127090 (in Chinese).
[26] SCHMID P J. Dynamic mode decomposition and its variants[J]. Annual Review of Fluid Mechanics202254: 225-254.
[27] 王方剑, 解克, 刘金, 等. 小展弦比飞翼标模非定常流动及自由摇滚特性[J]. 航空学报202344(4): 126449.
  WANG F J, XIE K, LIU J, et al. Unsteady flow and wing rock characteristics of low aspect ratio flying-wing[J]. Acta Aeronautica et Astronautica Sinica202344(4): 126449 (in Chinese).
[28] TIAN R Z, XU H Y, DONG Q L, et al. Numerical investigation of aero-optical effects of flow past a flat-windowed cylindrical turret[J]. Physics of Fluids202032: 056103.
[29] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
[30] WANG K, WANG M. Computational analysis of aero-optical distortions by flow over a cylindrical turret[J]. AIAA Journal201654(5): 1461-1471.
[31] WANG M, MANI A L, GORDEYEV S. Physics and computation of aero-optics[J]. Annual Review of Fluid Mechanics201244: 299-321.
[32] ZILBERTER I A, EDWARDS J R, WITTICH D J. Numerical simulation of aero-optical effects in a supersonic cavity flow[J]. AIAA Journal201755(9): 3095-3108.
[33] SAKAMOTO H, HANIU H. A study on vortex shedding from spheres in a uniform flow[J]. Journal of Fluids Engineering1990112(4): 386-392.
Outlines

/