ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A knowledge-user behavior-driven aircraft assembly tooling design knowledge recommendation approach
Received date: 2024-10-17
Revised date: 2024-11-01
Accepted date: 2024-11-22
Online published: 2024-12-12
Supported by
National Natural Science Foundation of China(52205244);China Advanced Manufacturing Technology Development Special Funding Program(62502500601)
Facing the challenge of frequent changes on aircraft models, it is necessary to achieve rapid design for aircraft assembly tooling. Aircraft product assembly tooling design is a long-term and high-cost tasks. Designers invest significant time and effort in tooling design, heavily relying on personal experience, with limited support and inheritance of tooling design knowledge. To address this issue, this study proposed an assembly tooling design knowledge recommendation approach based on knowledge graph and user behavior feedback. First, a knowledge document repository and a domain knowledge label network are constructed, forming a knowledge graph. Then, by constructing and activating a knowledge push scenario model, the priority of knowledge documents is computed based on their relevance between the knowledge push scenario and knowledge tags. Additionally, a knowledge push adjustment mechanism is proposed, and the priority of the knowledge documents will be adjusted based on user behaviors. Using aircraft wall panel tooling design as an example, this study validates the effectiveness of the user behavior-based parameter adjustment mechanism in knowledge recommendation. The example demonstrates that the accuracy of the proposed method in pushing the top 5 relevant knowledge documents is 0.83. Results also show that tags with higher search frequency are ranked higher, and user ratings of “helpful” significantly increase the priority of recommended knowledge under the same recommendation frequency. Additionally, a prototype system for aircraft panel assembly tooling design knowledge push is developed on the CATIA platform, applying the method to facilitate designers’ efficient access to relevant tooling knowledge.
Zuoxu WANG , Xin WANG , Shuang MENG , Lianyu ZHENG . A knowledge-user behavior-driven aircraft assembly tooling design knowledge recommendation approach[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(9) : 431417 -431417 . DOI: 10.7527/S1000-6893.2024.31417
1 | 靳江艳, 黄翔, 卢鹄, 等. 飞机设计域向工装域映射机理研究[J]. 航空学报, 2012, 33(12): 2330-2337. |
JIN J Y, HUANG X, LU H, et al. Research on mapping mechanism from product design to tooling concept design for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2330-2337 (in Chinese). | |
2 | 潘志毅, 黄翔, 李迎光. 飞机制造大型工装布局设计方法研究与实现[J]. 航空学报, 2008, 29(3): 757-762. |
PAN Z Y, HUANG X, LI Y G. Research and implementation of method of layout design for large tooling in aircraft manufacture[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 757-762 (in Chinese). | |
3 | 金加奇, 孔祥伟, 赵清洲,等. 用于飞机舱门装配的柔性工装设计[J]. 机械设计与制造, 2023(3): 135-140, 145. |
JIN J Q, KONG X W, ZHAO Q Z, et al. Design of flexible tooling for aircraft hatch assembly[J]. Machinery Design & Manufacture, 2023(3): 135-140, 145 (in Chinese). | |
4 | 郭飞燕, 刘检华, 邹方, 等. 数字孪生驱动的装配工艺设计现状及关键实现技术研究[J]. 机械工程学报, 2019, 55(17): 110-132. |
GUO F Y, LIU J H, ZOU F, et al. Research on the state-of-art, connotation and key implementation technology of assembly process planning with digital twin[J]. Journal of Mechanical Engineering, 2019, 55(17): 110-132 (in Chinese). | |
5 | 庞艳. 数字化工装设计管理平台研究与应用[J]. 智能制造, 2016(8): 22-24. |
PANG Y. Research and application of digital tooling design management platform[J]. Intelligent Manufacturing, 2016(8): 22-24 (in Chinese). | |
6 | 李瑞, 王永鹏, 李昆, 等. 基于知识和模块化的工装快速设计研究[J]. 制造业自动化, 2020, 42(5): 95-97, 136. |
LI R, WANG Y P, LI K, et al. Research on rapid design of tooling based on knowledge and modularization[J]. Manufacturing Automation, 2020, 42(5): 95-97, 136 (in Chinese). | |
7 | ZHANG K, ZHAO W, WANG J, et al. Knowledge push technology based on quality function knowledge deployment[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(4): 1119-1138. |
8 | 聂同攀, 曾继炎, 程玉杰, 等. 面向飞机电源系统故障诊断的知识图谱构建技术及应用[J]. 航空学报, 2022, 43(8): 625499. |
NIE T P, ZENG J Y, CHENG Y J, et al. Knowledge graph construction technology and its application in aircraft power system fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 625499 (in Chinese). | |
9 | 张栋豪, 刘振宇, 郏维强, 等. 知识图谱在智能制造领域的研究现状及其应用前景综述[J]. 机械工程学报, 2021, 57(5): 90-113. |
ZHANG D H, LIU Z Y, JIA W Q, et al. A review on knowledge graph and its application prospects to intelligent manufacturing[J]. Journal of Mechanical Engineering, 2021, 57(5): 90-113 (in Chinese). | |
10 | 于泽源, 赵武, 张凯, 等. 支持产品迭代设计的知识推送方法[J]. 机械工程学报, 2022, 58(18): 292-302. |
YU Z Y, ZHAO W, ZHANG K, et al. Knowledge push method to support iterative product design[J]. Journal of Mechanical Engineering, 2022, 58(18): 292-302 (in Chinese). | |
11 | 尹昱东, 王保建. 半结构装配数据的知识抽取及机床装配知识图谱构建方法研究[J]. 制造技术与机床, 2022(11): 97-101. |
YIN Y D, WANG B J. Research on knowledge extraction of semi-structured assembly data and construction method of machine tool assembly knowledge graph[J] Manufacturing Technology & Machine Tool, 2022(11): 97-101 (in Chinese). | |
12 | 李乐乐, 王奕为, 丁超, 等. 面向飞机维修与维护的知识图谱应用[J]. 内燃机与配件, 2019(23): 147-148. |
LI L L, WANG Y W, DING C, et al. The design and realization of aircraft maintenance and repair's knowledge system based on knowledge graph[J]. Internal Combustion Engine & Parts, 2019(23): 147-148 (in Chinese). | |
13 | 余隋怀, 王鹏超, 王磊, 等. 基于知识工程的产品设计研究综述[J]. 机械工程学报, 2024, 60(13): 216-234. |
YU S H, WANG P C, WANG L, et al. Research review of product design based on knowledge engineering[J]. Journal of Mechanical Engineering, 2024, 60(13): 216-234 (in Chinese). | |
14 | 乔文文. 基于知识工程的产品设计技术研究[D]. 唐山: 华北理工大学, 2021. |
QIAO W W. Research on product design technology based on knowledge engineering[D]. Tangshan: North China University of Science and Technology, 2021 (in Chinese). | |
15 | 陈洪军, 陈新度, 陈新, 等. 新一代基于知识的工程系统[J]. 中国机械工程, 2002(17): 58-61, 5. |
CHEN H J, CHEN X D, CHEN X, et al. New generation of knowledge-based engineering systems[J]. China Mechanical Engineering, 2002(17): 58-61, 5 (in Chinese). | |
16 | 耿忠林, 张祥林. 利用知识工程进行自行车车架设计[J]. CAD/CAM与制造业信息化, 2006(7): 40-42. |
GENG Z L, ZHANG X L. Bicycle frame design using knowledge engineering[J]. CAD/CAM and Manufacturing Information, 2006(7): 40-42 (in Chinese). | |
17 | 密阮建驰, 战洪飞, 余军合. 面向企业知识推荐的知识情景建模方法研究[J]. 情报理论与实践, 2016, 39(4): 78-83, 59. |
MI R J C, ZHAN H F, YU J H. Research on knowledge context modeling method for enterprise knowledge recommendation[J]. Information Theory & Application, 2016, 39(4): 78-83, 59 (in Chinese). | |
18 | 徐荣振, 高琦, 王昊, 等. 基于序列模式挖掘的变型设计知识推送[J]. 计算机集成制造系统, 2016, 22(5): 1179-1186. |
XU R Z, GAO Q, WANG H, et al. Product design knowledge recommendation based on sequential pattern mining[J]. Computer Integrated Manufacturing Systems, 2016, 22(5): 1179-1186 (in Chinese). | |
19 | SONG B, JIANG Z. Proactive search enabled context-sensitive knowledge supply situated in computer-aided engineering[J]. Advanced Engineering Informatics, 2013, 27(1): 66-75. |
20 | LI M, WANG Z, YAN Z, et al. Promoting knowledge recommendation in innovative engineering design: a bert-gat-based patent representation learning approach[J]. Journal of Engineering Design, 2024: 1-26 (in press). |
21 | MORADI P, AHMADIAN S. A reliability-based recommendation method to improve trust-aware recommender systems[J]. Expert Systems with Applications, 2015, 42(21): 7386-7398. |
22 | 王临科, 蒋祖华, 李心雨. 面向工程领域的主题多样性知识推荐方法[J]. 计算机集成制造系统, 2021, 27(1): 214-227. |
WANG L K, JIANG Z H, LI X Y. Topic diversity knowledge recommendation method in engineering field [J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 214-227 (in Chinese). | |
23 | 叶晨, 战洪飞, 林颖俊, 等. 基于推理-情境感知激活模型的设计知识推荐[J]. 浙江大学学报(工学版), 2023, 57(1): 32-46. |
YE C, ZHAN H F, LIN Y J, et al. Design knowledge recommendation based on inference-context-aware activation model[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(1): 32-46 (in Chinese). | |
24 | GAO X, FENG Y, HONG Z, et al. Adaptive decoupling planning method for the product crowdsourcing design tasks based on knowledge reuse[J]. Expert Systems with Applications, 2022, 206: 117525. |
25 | LIU Z, LOU S, FENG Y, et al. A closed-loop human-computer interactive design method based on sequential human intention prediction and knowledge recommendation[J]. Journal of Engineering Design, 2024, 35(8):972-995. |
26 | 梁野, 张树有, 刘晓健, 等. 基于变权分层激活扩散模型的产品设计知识动态推送技术[J]. 计算机集成制造系统, 2015, 21(12): 3107-3118. |
LIANG Y, ZHANG S Y, LIU X J, et al. Product design knowledge dynamic push technology based on variable-weight layered spreading activation model[J]. Computer Integrated Manufacturing Systems, 2015, 21(12): 3107-3118 (in Chinese). | |
27 | GAO Y, FENG Y, TAN J. Exploratory study on cognitive information gain modeling and optimization of personalized recommendations for knowledge reuse[J]. Journal of Manufacturing Systems, 2017, 43: 400-408. |
28 | MENG S, FAN W, WANG X, et al. Intelligent design of reconfigurable flexible assembly fixture for aircraft panels based on smart composite jig model and knowledge graph[J]. Journal of Engineering Design, 2024: 1-35 (in press). |
29 | MAY R M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261(5560): 459-467. |
30 | WICHITAKSORN N, KANG Y, ZHANG F. Random feature selection using random subspace logistic regression[J]. Expert Systems with Applications, 2023, 217: 119535. |
/
〈 |
|
〉 |