ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research progress review on hypersonic three-dimensional inward-turning inlet
Received date: 2024-09-20
Revised date: 2024-10-19
Accepted date: 2024-11-21
Online published: 2024-11-29
Supported by
National Natural Science Foundation of China(U21B6003);Fundamental Research Funds for the Central Universities(20720240032);China Postdoctoral Science Foundation(2022M712653)
The hypersonic three-dimensional inward-turning inlet has gradually become the preferred design for air-breathing vehicles due to its advantages of compact structure, high compression efficiency, high flow capture capability, high total pressure recovery coefficient, and ease of integration. Since the introduction of the inward-turning inlet concept, it has attracted extensive attention from scholars and research institutions worldwide. Firstly, focusing on the aerodynamic design and optimization of the inward-turning inlet, the recent advancements in shock wave analytic theory, basic flowfield construction, and inward-turning inlet design are summarized. Subsequently, the research on improving the performance of the inward-turning inlet under off-design conditions is introduced from the perspectives of low Mach number starting and anti-backpressure characteristics. The current application of the inward-turning inlet in TBCC combined propulsion systems is then discussed. Finally, based on the analysis and summary of the current research status at home and abroad, four key future research spots of the three-dimensional inward-turning inlet are pointed out.
Xiaogang ZHENG , Chongguang SHI , Jiale ZHANG , Mi ZHANG , Wenlei ZHU , Chengxiang ZHU , Yancheng YOU . Research progress review on hypersonic three-dimensional inward-turning inlet[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(8) : 631245 -631245 . DOI: 10.7527/S1000-6893.2024.31245
1 | HANK J, MURPHY J, MUTZMAN R. The X-51A scramjet engine flight demonstration program?[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
2 | DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18. |
3 | FAVALORO N, PEZZELLA G, CARANDENTE V, et al. Design analysis of the high-speed experimental flight test vehicle HEXAFLY-international?[C]∥ 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2015. |
4 | STEELANT J, LANGENER T, HANNEMANN K, et al. Conceptual design of the high-speed propelled experimental flight test vehicle HEXAFLY?[C]?∥ 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2015. |
5 | STEELANT J, VILLACE V, KALLENBACH A, et al. Flight testing designs in HEXAFLY-INT for high-speed transportation?[C]∥ International Conference on High-Speed Vehicle Science & Technology, 2018 |
6 | 张堃元. 高超声速进气道曲面压缩技术综述[J]. 推进技术, 2018, 39(10): 2227-2235. |
ZHANG K Y. Review on curved surface compression technology of hypersonic inlet[J]. Journal of Propulsion Technology, 2018, 39(10): 2227-2235 (in Chinese). | |
7 | HUANG H X, TAN H J, LI F B, et al. A review of the shock-dominated flow in a hypersonic inlet/isolator[J]. Progress in Aerospace Sciences, 2023, 143: 100952. |
8 | MA Y, GUO M M, TIAN Y, et al. Recent advances and prospects in hypersonic inlet design and intelligent optimization[J]. Aerospace Science and Technology, 2024, 146: 108953. |
9 | 尤延铖, 梁德旺, 郭荣伟, 等. 高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J]. 力学进展, 2009, 39(5): 513-525. |
YOU Y C, LIANG D W, GUO R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics, 2009, 39(5): 513-525 (in Chinese). | |
10 | 尤延铖, 梁德旺, 黄国平. 一种新型内乘波式进气道初步研究[J]. 推进技术, 2006, 27(3): 252-256. |
YOU Y C, LIANG D W, HUANG G P. Investigation of internal waverider-derived hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(3): 252-256 (in Chinese). | |
11 | SCHEID W, MüLLER H, GREINER W. Nuclear shock waves in heavy-ion collisions[J]. Physical Review Letters, 1974, 32(13): 741-745. |
12 | DOSS K G, GUSTAFSSON H, GUTBROD H, et al. Fragment flow in nuclear collisions[J]. Physical Review Letters, 1987, 59(24): 2720-2723. |
13 | STOICEA G, PETROVICI M, ANDRONIC A, et al. Azimuthal dependence of collective expansion for symmetric heavy-ion collisions[J]. Physical Review Letters, 2004, 92(7): 072303. |
14 | KAPLAN A E, DUBETSKY B Y, SHKOLNIKOV P L. Shock shells in coulomb explosions of nanoclusters[J]. Physical Review Letters, 2003, 91(14): 143401. |
15 | HICKSTEIN D D, DOLLAR F, GAFFNEY J A, et al. Observation and control of shock waves in individual nanoplasmas[J]. Physical Review Letters, 2014, 112(11): 115004. |
16 | KAUSHIK M. Fundamentals of gas dynamics[M]. Singapore: Springer, 2022. |
17 | MACH E, MCCORMACK T J. The science of mechanics: A critical and historical exposition of its principles[M]. Chicago: The Open Court Publishing Co., 1893. |
18 | 姜宗林. 高超声速高焓风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(3): 347-355. |
JIANG Z L. Progresses on experimental techniques of hypersonic and high-enthalpy wind tunnels[J]. Acta Aerodynamica Sinica, 2019, 37(3): 347-355 (in Chinese). | |
19 | TAYLOR G I, MACCOLL J W. The air pressure on a cone moving at high speeds: II[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1933, 139(838): 298-311. |
20 | 尤延铖, 梁德旺. 内乘波式进气道内收缩基本流场研究[J]. 空气动力学学报, 2008, 26(2): 203-207. |
YOU Y C, LIANG D W. Investigation of internal compression flowfield for internal waverider-derived inlet[J]. Acta Aerodynamica Sinica, 2008, 26(2): 203-207 (in Chinese). | |
21 | CROCCO L. Singolarita della corrente gassosa iperacustica nellinterno di una prora a diedro[J]. Congresso dell Unione Matematica Italiana, 1937, 15: 597-615. |
CROCCO L. Singularities of hypersonic gas flow inside a dihedral bow[J]. Congress of the Italian Mathematical Union, 1937, 15: 597-615 (in Italian). | |
22 | THOMAS T Y. On curved shock waves[J]. Journal of Mathematics and Physics, 1947, 26(1-4): 62-68. |
23 | M?LDER S. Curved aerodynamic shock waves[D]. Montreal: McGill University, 2012. |
24 | LIN C C, RUBINOV S I. On the flow behind curved shocks[J]. Journal of Mathematics and Physics, 1948, 27(1-4): 105-129. |
25 | THOMAS T Y. The consistency relations for shock waves[J]. Journal of Mathematics and Physics, 1949, 28(1-4): 62-90. |
26 | KANWAL R P. On curved shock waves in three-dimensional gas flows[J]. Quarterly of Applied Mathematics, 1959, 16(4): 361-372. |
27 | HAYES W D, PROBSTEIN R F. Hypersonic flow theory: Inviscid flows, Volume 1[M]. New York: Academic Press, 1966. |
28 | HORNUNG H G. Gradients at a curved shock in reacting flow[J]. Shock Waves, 1998, 8(1): 11-21. |
29 | TRUESDELL C. On curved shocks in steady plane flow of an ideal fluid[J]. Journal of the Aeronautical Sciences, 1952, 19(12): 826-828. |
30 | GERBER N, BARTOS J M. Calculation of flow-variable gradients behind curved shock waves[J]. Journal of the Aerospace Sciences, 1960, 27(12): 958-959. |
31 | EMANUEL G, LIU M S. Shock wave derivatives[J]. The Physics of Fluids, 1988, 31(12): 3625-3633. |
32 | KANWAL R P. Determination of the vorticity and the gradients of flow parameters behind a three-dimensional unsteady curved shock wave[J]. Archive for Rational Mechanics and Analysis, 1957, 1(1): 225-232. |
33 | M?LDER S. Curved shock theory[J]. Shock Waves, 2016, 26(4): 337-353. |
34 | SHI C G, HAN W Q, DEITERDING R, et al. Second-order curved shock theory[J]. Journal of Fluid Mechanics, 2020, 891: A21. |
35 | SHI C G, ZHU C X, YOU Y C, et al. Method of curved-shock characteristics with application to inverse design of supersonic flowfields[J]. Journal of Fluid Mechanics, 2021, 920: A36. |
36 | SHI C G, YOU Y C, ZHENG X G, et al. Analytical model for curved-shock Mach reflection[J]. Physics of Fluids, 2023, 35(3): 031702. |
37 | ZHANG T, XU K J, SHI C G, et al. Reflection and transition of planar curved shock waves[J]. Journal of Fluid Mechanics, 2023, 959: A11. |
38 | YAN H, HAN X, XIONG H C, et al. Curved detonation and its reflections[J]. Journal of Fluid Mechanics, 2024, 984: A11. |
39 | YAN H, XIONG H C, HAN X, et al. A theoretical method for oblique and curved detonation waves[J]. Physics of Fluids, 2024, 36(6): 066108. |
40 | CHENG J R, YANG K, ZHENG X G, et al. Analytical model for predicting the length scale of shock/boundary layer interaction with curvature[J]. Physics of Fluids, 2022, 34(11): 111701. |
41 | CHENG J R, ZHANG T, SHI C G, et al. Analytical reconstruction of axisymmetric curved shock wave/boundary layer interactions[J]. Physics of Fluids, 2024, 36(4): 046125. |
42 | EMANUEL G, M?LDER S. Three-dimensional curved shock theory[J]. Shock Waves, 2022, 32(2): 129-146. |
43 | 王江峰, 王旭东, 李佳伟, 等. 高超声速巡航飞行器乘波布局气动设计综述[J]. 空气动力学学报, 2018, 36(5): 705-728. |
WANG J F, WANG X D, LI J W, et al. Overview on aerodynamic design of cruising waverider configuration for hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2018, 36(5): 705-728 (in Chinese). | |
44 | 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43-59. |
QIAO W Y, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59 (in Chinese). | |
45 | 张堃元. 基于弯曲激波压缩系统的高超声速进气道反设计研究进展[J]. 航空学报, 2015, 36(1): 274-288. |
ZHANG K Y. Research progress of hypersonic inlet reverse design based on curved shock compression system[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 274-288 (in Chinese). | |
46 | OGAWA H, M?LDER S, BOYCE R. Effects of leading-edge truncation and stunting on drag and efficiency of Busemann intakes for axisymmetric scramjet engines[J]. Journal of Fluid Science and Technology, 2013, 8(2): 186-199. |
47 | O’BRIEN T F, COLVILLE J R. Analytical computation of leading-edge truncation effects on inviscid Busemann-inlet performance[J]. Journal of Propulsion and Power, 2008, 24(4): 655-661. |
48 | 岳连捷, 肖雅彬, 陈立红, 等. 高超声速流线追踪进气道基准流场设计[C]∥ 第二届高超声速科技学术会议会议日程及摘要集. 北京: 中国力学学会, 2009. |
YUW L J, XIAO Y B, CHEN L H, et al. Design of reference flow field for hypersonic streamline tracking inlet[C]∥ Proceedings and Abstracts of the Second Hypersonic Science and Technology Academic Conference. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2009 (in Chinese). | |
49 | 郭军亮, 黄国平, 尤延铖, 等. 改善内乘波式进气道出口均匀性的内收缩基本流场研究[J]. 宇航学报, 2009, 30(5): 1934-1940, 1952. |
GUO J L, HUANG G P, YOU Y C, et al. Study of internal compression flowfield for improving the outflow uniformity of internal waverider inlet[J]. Journal of Astronautics, 2009, 30(5): 1934-1940, 1952 (in Chinese). | |
50 | 黄慧慧, 黄国平, 俞宗汉, 等. 高外压缩比的高超声速内乘波进气道设计[J]. 工程热物理学报, 2015, 36(6): 1233-1237. |
HUANG H H, HUANG G P, YU Z H, et al. The design of internal waverider hypersonic inlet with high ratio of external compression[J]. Journal of Engineering Thermophysics, 2015, 36(6): 1233-1237 (in Chinese). | |
51 | XIA C, HUANG G P, YUE T, et al. A new design of variable-geometry TBCC inlet based on an internal waverider concept[J]. International Journal of Astronautics and Aeronautical Engineering, 2020, 5(1): 37. |
52 | ZUO F Y, HUANG G P, XIA C. Investigation of internal-waverider-inlet flow pattern integrated with variable-geometry for TBCC[J]. Aerospace Science and Technology, 2016, 59: 69-77. |
53 | ZUO F Y, M?LDER S. Flow quality in an M-Busemann wavecatcher intake[J]. Aerospace Science and Technology, 2022, 121: 107376. |
54 | OTTO S E, TREFNY C J, SLATER J W. Inward-turning streamline-traced supersonic inlet design method for low-boom, low-drag applications[C]∥ 51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2015. |
55 | MUSA O, HUANG G P, JIN B, et al. New parent flowfield for streamline-traced intakes[J]. AIAA Journal, 2023, 61(7): 2906-2921. |
56 | 王磊, 张堃元, 苏纬仪, 等. 高超声速二元弯曲激波压缩流场性能分析[J]. 推进技术, 2017, 38(4): 764-771. |
WANG L, ZHANG K Y, SU W Y, et al. Performance analysis of hypersonic 2D curved shock compression flow field[J]. Journal of Propulsion Technology, 2017, 38(4): 764-771 (in Chinese). | |
57 | ZUCROW M J, HOFFMAN J. Gas dynamics, Volume 1[M]. New York: Libaary of Congress Cataloging, American, 1976. |
58 | MATTHEWS A J, JONES T V. Design and test of a modular waverider hypersonic intake[J]. Journal of Propulsion and Power, 2006, 22(4): 913-920. |
59 | 南向军. 压升规律可控的高超声速内收缩进气道设计方法研究[D]. 南京: 南京航空航天大学, 2012. |
NAN X J. Study on design method of hypersonic internal contraction inlet with controllable pressure rise law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
60 | 南向军, 张堃元, 金志光, 等. 压升规律可控的高超声速内收缩进气道设计[J]. 航空动力学报, 2011, 26(3): 518-523. |
NAN X J, ZHANG K Y, JIN Z G, et al. Investigation on hypersonic inward turning inlets with controlled pressure gradient[J]. Journal of Aerospace Power, 2011, 26(3): 518-523 (in Chinese). | |
61 | 南向军, 张堃元, 金志光, 等. 矩形转圆形高超声速内收缩进气道数值及试验研究[J]. 航空学报, 2011, 32(6): 988-996. |
NAN X J, ZHANG K Y, JIN Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 988-996 (in Chinese). | |
62 | 南向军, 张堃元, 金志光. 采用新型基准流场的高超内收缩进气道试验研究[J]. 航空学报, 2014, 35(1): 90-96. |
NAN X J, ZHANG K Y, JIN Z G. Experimental study of hypersonic inward turning inlets with innovative basic flowfiled[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 90-96 (in Chinese). | |
63 | 南向军, 张堃元. 采用新型基准流场的高超声速内收缩进气道性能分析[J]. 宇航学报, 2012, 33(2): 254-259. |
NAN X J, ZHANG K Y. Analysis of hypersonic inward turning inlet with innovative axisymmetric basic flowfield[J]. Journal of Astronautics, 2012, 33(2): 254-259 (in Chinese). | |
64 | 何家祥, 金东海. 基于Busemann压升规律的可控消波内转基准流场设计[J]. 航空动力学报, 2017, 32(5): 1168-1175. |
HE J X, JIN D H. Busemann pressure rise distribution based design of inward turning basic flowfield with controlled and cancelled shock waves[J]. Journal of Aerospace Power, 2017, 32(5): 1168-1175 (in Chinese). | |
65 | 李永洲, 张堃元, 南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报, 2012, 27(11): 2484-2491. |
LI Y Z, ZHANG K Y, NAN X J. Design of hypersonic inward turning inlets base on concept of controllable Mach number distribution[J]. Journal of Aerospace Power, 2012, 27(11): 2484-2491 (in Chinese). | |
66 | 李永洲, 张堃元, 王磊, 等. 马赫数分布可控的基准流场灵敏度分析与优化设计[J]. 航空动力学报, 2013, 28(4): 765-774. |
LI Y Z, ZHANG K Y, WANG L, et al. Sensitivity analysis and optimization design of basic flowfield with controllable Mach number distribution[J]. Journal of Aerospace Power, 2013, 28(4): 765-774 (in Chinese). | |
67 | 朱伟, 张堃元, 南向军. 壁面马赫数分布规律可控的新型内收缩基准流场设计方法[J]. 推进技术, 2013, 34(4): 433-438. |
ZHU W, ZHANG K Y, NAN X J. Investigation on basic flowfield with controlled Mach number gradient for hypersonic inward turning inlets[J]. Journal of Propulsion Technology, 2013, 34(4): 433-438 (in Chinese). | |
68 | 李永洲, 张堃元, 罗蕾, 等. 高超声速内收缩进气道轴对称基准流场改进[J]. 航空动力学报, 2013, 28(11): 2543-2552. |
LI Y Z, ZHANG K Y, LUO L, et al. Modified axisymmetric basic flowfield for hypersonic inward turning inlet[J]. Journal of Aerospace Power, 2013, 28(11): 2543-2552 (in Chinese). | |
69 | 李永洲, 张堃元, 钟启涛. 四段修型弥散反射激波中心体基准流场研究[J]. 航空动力学报, 2014, 29(9): 2055-2062. |
LI Y Z, ZHANG K Y, ZHONG Q T. Investigation of basic flowfield with center body consisting of four spline curves diffusing reflected shock wave[J]. Journal of Aerospace Power, 2014, 29(9): 2055-2062 (in Chinese). | |
70 | 汤飘平, 苏纬仪, 张堃元. 基于内锥和中心体表面流动参数分布的轴对称基准流场反设计[J]. 推进技术, 2017, 38(8): 1709-1716. |
TANG P P, SU W Y, ZHANG K Y. Inverse design of axisymmetric basic flow field with destined flow distributions on wall of inner cone and center body[J]. Journal of Propulsion Technology, 2017, 38(8): 1709-1716 (in Chinese). | |
71 | 李永洲, 孙迪, 王仁华, 等. 非均匀来流的马赫数可控内收缩进气道设计[J]. 航空学报, 2023, 44(12): 127857. |
LI Y Z, SUN D, WANG R H, et al. Design of inward turning inlet with controlled Mach number under non-uniform inflow[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 127857 (in Chinese). | |
72 | 方兴军. 控制出口速度分布的超声速内流通道反设计[D]. 南京: 南京航空航天大学, 2012. |
FANG X J. Inverse design of supersonic internal flow channel for controlling outlet velocity distribution[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
73 | 刘燚. 控制出口马赫数分布的高超声速压缩通道反设计[D]. 南京: 南京航空航天大学, 2012. |
LIU Y. Inverse design of hypersonic compression channel for controlling exit Mach number distribution[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
74 | 韩伟强, 朱呈祥, 尤延铖, 等. 给定下游边界的超声速流场逆向求解方法[J]. 推进技术, 2016, 37(4): 624-631. |
HAN W Q, ZHU C X, YOU Y C, et al. An inverse method for supersonic flowfield with given downstream boundary[J]. Journal of Propulsion Technology, 2016, 37(4): 624-631 (in Chinese). | |
75 | QIAO W Y, YU A Y, GAO W, et al. Design method with controllable velocity direction at throat for inward-turning inlets[J]. Chinese Journal of Aeronautics, 2019, 32(6): 1403-1415. |
76 | 方啸雷. 基于弯曲激波的多通道内收缩组合进气道设计方法及气动特性研究[D]. 厦门: 厦门大学, 2024. |
FANG X L. Design method and aerodynamic characteristics of multi-channel internal contracting inlet based on curved shock[D]. Xiamen: Xiamen University, 2024 (in Chinese). | |
77 | 卫锋, 贺旭照, 贺元元, 等. 三维内转式进气道双激波基准流场的设计方法[J]. 推进技术, 2015, 36(3): 358-364. |
WEI F, HE X Z, HE Y Y, et al. Design method of dual-shock wave basic flow-field for inward turning inlet[J]. Journal of Propulsion Technology, 2015, 36(3): 358-364 (in Chinese). | |
78 | 卫锋. 基于特征线理论的流线追踪内转向进气道设计方法研究[D]. 长沙: 国防科学技术大学, 2012. |
WEI F. Research on design method of streamline tracking internal steering inlet based on characteristic theory[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). | |
79 | ZHOU H, JIN Z G, GE N. Design method for non-axisymmetric generalized internal conical flowfield based on double 3D curved shock waves[J]. Aerospace Science and Technology, 2020, 105: 105971. |
80 | 李永洲, 张堃元, 朱伟, 等. 双弯曲入射激波的可控中心体内收缩基准流场设计[J]. 航空动力学报, 2015, 30(3): 563-570. |
LI Y Z, ZHANG K Y, ZHU W, et al. Design for inward turning basic flowfield with controlled center body and two incident curved shock waves[J]. Journal of Aerospace Power, 2015, 30(3): 563-570 (in Chinese). | |
81 | 汤祎麒, 施崇广, 郑晓刚, 等. 基于弯曲激波特征线法的两级压缩内收缩流场设计与分析[J]. 气体物理, 2022, 7(6): 42-54. |
TANG Y Q, SHI C G, ZHENG X G, et al. Design and analysis of two-stage compression internal flowfield based on method of curved-shock characteristics[J]. Physics of Gases, 2022, 7(6): 42-54 (in Chinese). | |
82 | M?LDER S, SZPIRO E J. Busemann inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets, 1966, 3(8): 1303-1304. |
83 | MOLDER S, D’SOUZA N. Applicability of hypersonic small-disturbance theory and similitude to internal hypersonic conical flows[J]. Journal of Spacecraft and Rockets, 1970, 7(2): 149-154. |
84 | VAN WIE D, MOLDER S. Applications of Busemann inlet designs for flight at hypersonic speeds[C]∥ Aerospace Design Conference. Reston: AIAA, 1992. |
85 | BILLIG F, BAURLE R, TAM C J, et al. Design and analysis of streamline traced hypersonic inlets[C]∥ 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. |
86 | JACOBSEN L, TAM C J, BEHDADNIA R, et al. Starting and operation of a streamline-traced Busemann inlet at Mach 4[C]∥ 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006. |
87 | RAMASUBRAMANIAN V, LEWIS M, STARKEY R. Performance of various truncation strategies employed on hypersonic Busemann inlets[C]∥ 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009. |
88 | FLOCK A K, GüLHAN A. Viscous effects and truncation effects in axisymmetric Busemann scramjet intakes[J]. AIAA Journal, 2016, 54(6): 1881-1891. |
89 | WALKER S, RODGERS F, PAULL A, et al. HyCAUSE flight test program[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
90 | WALKER S, RODGERS F. The hypersonic collaborative Australia/United States experiment (HyCAUSE)[C]∥ AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005. |
91 | XIAO Y B, YUE L J, GONG P, et al. Investigation on a truncated streamline-traced hypersonic Busemann inlet[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
92 | ZHAO Z, SONG W Y. Effect of truncation on the performance of Busemann inlet[J]. Modern Applied Science, 2009, 3(2): 168-171. |
93 | SUN B, ZHANG K Y, WANG C P, et al. Investigation on a streamtraced hypersonic Busemann inlet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2010, 224(1): 57-63. |
94 | LI Y, WU Z, WU S, et al. Assessment of total pressure and swirl distortions in a Busemann inlet at Mach 6[J]. Journal of Applied Fluid Mechanics, 2023, 16(9): 1865-1876. |
95 | ZHU M J, ZHOU S, LIU Y, et al. Control-volume-based exergy method of truncated Busemann inlets in off-design conditions[J]. Processes, 2024, 12(3): 535. |
96 | MALO-MOLINA F, GAITONDE D, KUTSCHEN REUTER P. Numerical investigation of an innovative inward turning inlet[C]∥ 17th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2005. |
97 | MALO-MOLINA F, EBRAHIMI H, RUFFIN S. Analysis of an innovative inward turning inlet using an air-JP8 combustion mixture at Mach 7[C]∥ 36th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2006. |
98 | MALO-MOLINA F, GAITONDE D, EBRAHIMI H. Three dimensional analysis of a fully coupled hypersonic air-breathing inlet-combustor flowpath[C]∥ 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
99 | MALO-MOLINA F J, GAITONDE D V, EBRAHIMI H B, et al. Three-dimensional analysis of a supersonic combustor coupled to innovative inward-turning inlets[J]. AIAA Journal, 2010, 48(3): 572-582. |
100 | 董昊, 王成鹏, 程克明. “咽” 式高超进气道流动特性及性能分析[J]. 航空动力学报, 2009, 24(11): 2429-2435. |
DONG H, WANG C P, CHENG K M. Investigation of flow characteristic and performance on the “Jaws” hypersonic inlet[J]. Journal of Aerospace Power, 2009, 24(11): 2429-2435 (in Chinese). | |
101 | DONG H, WANG C P, CHENG K M. Experimental and numerical investigation of hypersonic jaws inlet[J]. Modern Physics Letters B, 2010, 24(13): 1409-1412. |
102 | 王成鹏, 董昊, 程克明. 咽式高超声速进气道试验与计算研究[J]. 空气动力学学报, 2012, 30(6): 761-766. |
WANG C P, DONG H, CHENG K M. Experimental and numerical study on hypersonic jaws inlet[J]. Acta Aerodynamica Sinica, 2012, 30(6): 761-766 (in Chinese). | |
103 | 辜天来, 付磊, 张帅, 等. 咽式进气道设计工况下性能初步分析[J]. 航空动力学报, 2014, 29(9): 2070-2078. |
GU T L, FU L, ZHANG S, et al. Preliminary analysis of jaws inlet performance under design conditions[J]. Journal of Aerospace Power, 2014, 29(9): 2070-2078 (in Chinese). | |
104 | GU T L, ZHANG S, ZHENG Y. Performance of a jaws inlet under off-design conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(2): 294-305. |
105 | 田亚洲, 袁化成, 张玲玲, 等. 流线追踪内转式低音爆进气道的设计方法及流动特征[J]. 推进技术, 2021, 42(8): 1798-1806. |
TIAN Y Z, YUAN H C, ZHANG L L, et al. Designing method and flow characteristic of streamline-traced inward-turning low-boom inlet[J]. Journal of Propulsion Technology, 2021, 42(8): 1798-1806 (in Chinese). | |
106 | 朱呈祥. 截面激波形状可控的内乘波式进气道设计与性能分析[D]. 南京: 南京航空航天大学, 2010. |
ZHU C X. Design and performance analysis of internal waverider inlet with controllable cross-section shock wave shape[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese). | |
107 | ZHOU H, JIN Z G, DENG S Y, et al. Design studies on NAGIC flowfield with application to integrated irregular-shaped supersonic inlet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2023, 237(6): 1286-1297. |
108 | HAO C K, LUO W G, YU Z H, et al. Novel design method for inward-turning inlets with non-uniform inflow[J]. Aerospace Science and Technology, 2024, 148: 109098. |
109 | ZUO F Y, M?LDER S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle engines[J]. Progress in Aerospace Sciences, 2019, 106: 108-144. |
110 | BILLIG F S, KOTHARI A P. Streamline tracing: Technique for designing hypersonic vehicles[J]. Journal of Propulsion and Power, 2000, 16(3): 465-471. |
111 | 卫锋, 贺旭照, 贺元元, 等. 三维内转式进气道对双旁进气飞行器力矩特性的影响分析[J]. 推进技术, 2014, 35(11): 1441-1447. |
WEI F, HE X Z, HE Y Y, et al. Effects analysis of 3D inward turning inlet on moment characteristics of vehicle with inlets decorated in both sides[J]. Journal of Propulsion Technology, 2014, 35(11): 1441-1447 (in Chinese). | |
112 | 张航, 孙姝, 黄河峡, 等. 高超声速双模块内转式进气道的流动特性研究-Part Ⅰ: 设计状态[J]. 推进技术, 2022, 43(7): 101-109. |
ZHANG H, SUN S, HUANG H X, et al. Flowfield of hypersonic bimodule inward-turning inlet-Part Ⅰ: Design point[J]. Journal of Propulsion Technology, 2022, 43(7): 101-109 (in Chinese). | |
113 | 张航, 孙姝, 谭慧俊, 等. 高超声速双模块内转式进气道的流动特性研究-Part Ⅱ:攻角影响[J]. 推进技术, 2022, 43(8): 174-180. |
ZHANG H, SUN S, TAN H J, et al. Flowfield of hypersonic bimodule inward-turning inlet-Part Ⅱ: Effects of attack angle[J]. Journal of Propulsion Technology, 2022, 43(8): 174-180 (in Chinese). | |
114 | SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3): 408-416. |
115 | SMART M K. Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2001, 17(2): 276-283. |
116 | SURAWEERA M V, SMART M K. Shock-tunnel experiments with a Mach 12 rectangular-to-elliptical shape-transition scramjet at offdesign conditions[J]. Journal of Propulsion and Power, 2009, 25(3): 555-564. |
117 | CHAN W Y K, MEE D J, SMART M K, et al. Drag reduction by boundary-layer combustion: Effects of flow disturbances from rectangular-to-elliptical-shape-transition inlets[J]. Journal of Propulsion and Power, 2015, 31(5): 1256-1267. |
118 | TAYLOR T, VANWIE D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
119 | 朱伟. 基于马赫数分布规律的高超矩形转圆内转式进气道设计研究[D]. 南京: 南京航空航天大学, 2012. |
ZHU W. Design and research of ultra-high rectangular rotary inlet based on Mach number distribution law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
120 | 李永洲, 孙迪, 张堃元, 等. 进口型线水平投影可控的变截面内收缩进气道设计[J]. 航空学报, 2017, 38(5): 120640. |
LI Y Z, SUN D, ZHANG K Y, et al. Design on variable section inward turning inlet with controlled horizontal projection of intake curve[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120640 (in Chinese). | |
121 | WANG J F, CAI J S, DUAN Y H, et al. Design of shape morphing hypersonic inward-turning inlet using multistage optimization[J]. Aerospace Science and Technology, 2017, 66: 44-58. |
122 | XIONG B, FERLAUTO M, FAN X Q. Optimal aerodynamic design of hypersonic inlets by using streamline-tracing techniques[J]. Advances in Aircraft and Spacecraft Sciences, 2020, 7(5): 441-458. |
123 | SABEAN J W, LEWIS M J. Computational optimization of a hypersonic rectangular-to-circular inlet[J]. Journal of Propulsion and Power, 2001, 17(3): 571-578. |
124 | YOU Y C, LIANG D W. Design concept of three-dimensional section controllable internal waverider hypersonic inlet[J]. Science in China Series E: Technological Sciences, 2009, 52(7): 2017-2028. |
125 | YOU Y C, LIANG D W, CAI K. Numerical research of three-dimensional section controllable internal waverider hypersonic inlet[C]∥ 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2008. |
126 | YOU Y C, LIANG D W, GUO R W. High enthalpy wind tunnel tests of three-dimensional section controllable internal waverider hypersonic inlet[C]∥ 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
127 | XIAO Y B, YUE L J, CHENR L, et al. Iso-contraction-ratio methodology for the design of hypersonic inward turning inlets with shape transition[C]∥18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2012. |
128 | XIAO Y B, YUE L J, MA S H, et al. Design methodology for shape transition inlets based on constant contraction of discrete streamtubes[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(8): 1496-1506. |
129 | 邬婉楠, 肖雅彬, 王立尧, 等. 基于离散等收缩比的前体/进气道流向双乘波一体化设计[J]. 力学学报, 2023, 55(12): 2844-2856. |
WU W N, XIAO Y B, WANG L Y, et al. Integrated design of forebody/inlet with dual-waverider in the stream direction based on discrete iso-contraction ratio[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2844-2856 (in Chinese). | |
130 | CEBECI T, BRADSHAW P. Physical and computational aspects of convective heat transfer[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984. |
131 | KELLER H B. A new difference scheme for parabolic problems[M]∥ Numerical Solution of Partial Differential Equations-II. Amsterdam: Elsevier, 1971: 327-350. |
132 | CEBECI T, SMITH A M O. Analysis of turbulent boundary layers[M]. New York: Academic Press, 1974. |
133 | 孙晓玲. 内收缩高超进气道附面层修正研究[D]. 南京: 南京航空航天大学, 2010. |
SUN X L. Study on boundary layer correction of internal contraction hypersonic inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese). | |
134 | 董昊, 王成鹏, 程克明. 设计参数及附面层修正对“咽” 式进气道性能的影响[J]. 推进技术, 2010, 31(3): 265-269. |
DONG H, WANG C P, CHENG K M. Effect of design parameters and boundary layer correction on performance of jaws inlet[J]. Journal of Propulsion Technology, 2010, 31(3): 265-269 (in Chinese). | |
135 | WHITE F M. Viscous fluid flow?[M]. 3rd ed. New York: McGraw-Hill, 1991. |
136 | BERTRAM M H. Hypersonic laminar viscous interaction effects on the aerodynamics of two-dimensional wedge and triangular planform wings: NASA-TN-D-3523[R]. Washington, D.C.: NASA,1966. |
137 | LIU W, ZHANG C N, WANG F M. Modification of hypersonic waveriders by vorticity-based boundary layer displacement thickness determination method[J]. Aerospace Science and Technology, 2018, 75: 200-214. |
138 | SIVELLS J C, PAYNE R G. A method of calculating turbulent-boundary-layer growth at hypersonic Mach numbers: AEDC-TR-59-3[R]. Tennessee: Arnold Engineering Development Center, Air Research and Development Command, United States Air Force, 1959. |
139 | WALSH P C, TAHIR R B, MOLDER S. Boundary-layer correction for the Busemann hypersonic air inlet[J]. Canadian Aeronautics and Space Journal, 2003, 49(1): 11-17. |
140 | DRAYNA T, NOMPELIS I, CANDLER G. Hypersonic inward turning inlets: Design and optimization[C]∥ 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
141 | SINHA N K, RAJESH G, MODI B. Viscous corrections for hypersonic air intake using CFD simulations[C]∥ AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
142 | 陈栋梁. 流线追踪Busemann进气道粘性修正方法研究[D]. 长沙: 国防科学技术大学, 2009. |
CHEN D L. Study on viscosity correction method of Busemann inlet with streamline tracking[D]. Changsha: National University of Defense Technology, 2009 (in Chinese). | |
143 | 李永洲. 马赫数分布可控的高超声速内收缩进气道及其一体化设计研究[D]. 南京: 南京航空航天大学, 2014. |
LI Y Z. Study on hypersonic internal contraction inlet with controllable Mach number distribution and its integrated design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese). | |
144 | 罗世彬, 孙雨航, 刘俊, 等. 高超声速乘波前体/进气道一体化设计综述[J]. 空天技术, 2022(6): 24-48. |
LUO S B, SUN Y H, LIU J, et al. Review of hypersonic waverider forebody/inlet integrated design[J]. Aerospace Technology, 2022(6): 24-48 (in Chinese). | |
145 | 王旭东, 王江峰, 程克明, 等. 黏性边界层修正对前体/进气道一体化乘波布局气动性能影响分析[J]. 空气动力学学报, 2021, 39(3): 62-70. |
WANG X D, WANG J F, CHENG K M, et al. Aerodynamic analysis of viscous boundary layer correction on integrated airframe-inlet waverider[J]. Acta Aerodynamica Sinica, 2021, 39(3): 62-70 (in Chinese). | |
146 | 丁峰. 吸气式高超声速飞行器内外流一体化“全乘波” 气动设计理论和方法研究[D]. 长沙: 国防科学技术大学, 2016. |
DING F. Study on the theory and method of aerodynamic design of “full wave” for air-breathing hypersonic vehicle with internal and external flow integration[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). | |
147 | DING F, LIU J, HUANG W, et al. Boundary-layer viscous correction method for hypersonic forebody/inlet integration[J]. Acta Astronautica, 2021, 189: 638-657. |
148 | VAN WIE D, KWOK F, WALSH R. Starting characteristics of supersonic inlets[C]∥ 32nd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1996 |
149 | 谭慧俊, 卜焕先, 张启帆, 等. 高超声速进气道不起动问题的研究进展[J]. 南京航空航天大学学报, 2014, 46(4): 501-508. |
TAN H J, BU H X, ZHANG Q F, et al. Review of hypersonic inlet unstart phenomenon[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46(4): 501-508 (in Chinese). | |
150 | YU D R, CHANG J T, BAO W, et al. Optimal classification criterions of hypersonic inlet start/unstart[J]. Journal of Propulsion and Power, 2007, 23(2): 310-316. |
151 | MOLDER S, TIMOFEEV E, TAHIR R. Flow starting in high compression hypersonic air inlets by mass spillage[C]∥ 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004. |
152 | TIMOFEEV E, TAHIR R, M?LDER S. On recent developments related to flow starting in hypersonic air intakes[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
153 | VEILLARD X, TAHIR R, TIMOFEEV E, et al. Limiting contractions for starting simple ramp-type scramjet intakes with overboard spillage[J]. Journal of Propulsion and Power, 2008, 24(5): 1042-1049. |
154 | KANTROWITZ A, DONALDSON C D. Preliminary investigation of supersonic diffusers: NACA-WR-L-713[R]. Washington, D. C.: NACA, 1945. |
155 | 潘成剑, 施崇广, 李怡庆, 等. 高超声速进气道起动问题的理论判据新认识[J]. 推进技术, 2016, 37(11): 2039-2047. |
PAN C J, SHI C G, LI Y Q, et al. A new understanding of hypersonic inlets' startability criterion[J]. Journal of Propulsion Technology, 2016, 37(11): 2039-2047 (in Chinese). | |
156 | MCCREADY J, HOPPE C, JOHNSON E, et al. Mach 4 performance of a hypersonic streamtraced inlet—Part 2: Computational results[C]∥ AIAA SCITECH 2022 Forum. Reston: AIAA, 2022. |
157 | 孙波, 张堃元, 王成鹏, 等. Busemann进气道无黏流场数值分析[J]. 推进技术, 2005, 26(3): 242-247. |
SUN B, ZHANG K Y, WANG C P, et al. Inviscid CFD analysis of hypersonic Busemann inlet[J]. Journal of Propulsion Technology, 2005, 26(3): 242-247 (in Chinese). | |
158 | 孙波, 张堃元. Busemann进气道起动问题初步研究[J]. 推进技术, 2006, 27(2): 128-131. |
SUN B, ZHANG K Y. Preliminary investigation on Busemann inlet starting characteristics[J]. Journal of Propulsion Technology, 2006, 27(2): 128-131 (in Chinese). | |
159 | 王德鹏, 田方超, 张启帆, 等. 进口形状对内转式进气道的起动特性影响[J]. 航空动力学报, 2015, 30(6): 1400-1406. |
WANG D P, TIAN F C, ZHANG Q F, et al. Effect of entry shape on starting characteristics of inward turning inlets[J]. Journal of Aerospace Power, 2015, 30(6): 1400-1406 (in Chinese). | |
160 | 李永洲, 张堃元, 张留欢. 抽吸对高超声速内收缩进气道涡流区及起动性能的影响[J]. 航空动力学报, 2016, 31(7): 1630-1637. |
LI Y Z, ZHANG K Y, ZHANG L H. Effect of bleeding on vortex region and starting performance of hypersonic inward turning inlet[J]. Journal of Aerospace Power, 2016, 31(7): 1630-1637 (in Chinese). | |
161 | 李永洲, 张堃元, 孙迪. 抽吸对方转圆内收缩进气道性能的影响[J]. 航空学报, 2016, 37(12): 3625-3633. |
LI Y Z, ZHANG K Y, SUN D. Effect of suction on performance of inward turning inlet with rectangular-to-circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3625-3633 (in Chinese). | |
162 | 卫锋, 贺旭照, 杨大伟, 等. 利用渗透边界模型分析三维内转式进气道启动性能[J]. 推进技术, 2017, 38(11): 2439-2446. |
WEI F, HE X Z, YANG D W, et al. Investigation of starting performance of a 3D inward turning inlet through fixed-exit bleed model[J]. Journal of Propulsion Technology, 2017, 38(11): 2439-2446 (in Chinese). | |
163 | XIONG B, FAN X Q, WANG Y. Design and evaluation of a conical hypersonic vehicle with an overturned aerodynamic layout[J]. Aerospace Science and Technology, 2021, 118: 106979. |
164 | 熊冰. 高超声速轴对称飞行器进气布局及内转进气道设计[D]. 长沙: 国防科技大学, 2019. |
XIONG B. Inlet layout and internal rotation inlet design of hypersonic axisymmetric aircraft[D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
165 | 周鑫. 含预压缩式凸包的倒置内转高超声速进气道设计与分析[D]. 长沙: 国防科技大学, 2017. |
ZHOU X. Design and analysis of inverted internal rotating hypersonic inlet with pre-compressed convex hull[D]. Changsha: National University of Defense Technology, 2017 (in Chinese). | |
166 | SMART M K, TREXLER C A. Mach 4 performance of a fixed-geometry hypersonic inlet with rectangular-to-elliptical shape transition[C]∥ 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
167 | SMART M K, TREXLER C A. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2004, 20(2): 288-293. |
168 | STEPHEN E J, HOENISCH S R, RIGGS C J, et al. HIFiRE-6 unstart conditions at off-design Mach numbers[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015. |
169 | JOHNSON E, JENQUIN C, MCCREADY J, et al. Experimental investigations of the hypersonic stream-traced performance inlet at subdesign Mach number[J]. AIAA Journal, 2023, 61(1): 23-36. |
170 | 杨大伟, 余安远, 韩亦宇, 等. 内转式进气道自起动性能研究[J]. 推进技术, 2019, 40(1): 76-83. |
YANG D W, YU A Y, HAN Y Y, et al. Study on self-starting characteristics of an inward turning inlet[J]. Journal of Propulsion Technology, 2019, 40(1): 76-83 (in Chinese). | |
171 | 杨大伟, 李一鸣, 张胜, 等. 实时泄流控制对内转进气道起动性能影响试验研究[J]. 气动研究与试验, 2024(3): 87-95. |
YANG D W, LI Y M, ZHANG S, et al. Real-time bleeding control influence on the starting characteristics of an inward-turning inlet[J]. Aerodynamic Research & Experiment, 2024(3): 87-95 (in Chinese). | |
172 | YU A Y, YANG D W, YANG H, et al. Experimental research on start characteristics of a hypersonic inward-turning inlet[C]∥ International Conference on the Methods of Aerophysical Research (ICMAR 2018), AIP Conference Proceedings, 2018. |
173 | 余安远, 曲俐鹏, 刘建霞, 等. 基于丝线流动显示技术的内转进气道起动性能实验[J]. 气体物理, 2023, 8(2): 32-43. |
YU A Y, QU L P, LIU J X, et al. Experiment on the starting characteristics of an inward-turning inlet based on silk-thread flow visualization method[J]. Physics of Gases, 2023, 8(2): 32-43 (in Chinese). | |
174 | YUAN H C, LI Z, ZHANG J S, et al. Experimental and numerical research on a three-dimensional inward-turning inlet[J]. Journal of Aerospace Engineering, 2023, 36(3): 04023008. |
175 | WANG K, WANG J Y, HUANG H X, et al. Effects of backpressure on unstart and restart characteristics of a supersonic inlet[J]. The Aeronautical Journal, 2023, 127(1316): 1774-1792. |
176 | OSWATITSCH K. Pressure recovery for missiles with reaction propulsion at high supersonic speeds (the efficiency of shock diffusers)[M]∥ Contributions to the Development of Gasdynamics. Wiesbaden: Vieweg+Teubner Verlag, 1980: 290-323. |
177 | LUO W G, WEI Y Q, DAI K, et al. Spatiotemporal characterization and suppression mechanism of supersonic inlet buzz with proper orthogonal decomposition method[J]. Energies, 2020, 13(1): 217. |
178 | ABEDI M, ASKARI R, SOLTANI M R. Numerical simulation of inlet buzz[J]. Aerospace Science and Technology, 2020, 97: 105547. |
179 | SEPAHI-YOUNSI J, ESMAEILI S. Source of buzz instability in a supersonic air inlet[J]. Aerospace Science and Technology, 2023, 138: 108334. |
180 | LUO W G, TAO Y, ZHU J F, et al. Evolution characteristics analysis of supersonic inlet buzz with high-order dynamic mode decomposition method[J]. Journal of Aerospace Engineering, 2024, 37(3): 04024026. |
181 | TAN H J, SUN S, YIN Z L. Oscillatory flows of rectangular hypersonic inlet unstart caused by downstream mass-flow choking[J]. Journal of Propulsion and Power, 2009, 25(1): 138-147. |
182 | CHANG J T, YU D R, BAO W, et al. Mathematical modeling and rapid recognition of hypersonic inlet buzz[J]. Aerospace Science and Technology, 2012, 23(1): 172-178. |
183 | BERTO F, BENINI E, WYATT C, et al. Time-accurate experimental investigation of hypersonic inlet buzz at Mach 5[J]. AIAA Journal, 2020, 58(5): 2197-2205. |
184 | SUNG H G, YEOM H W, YANG V, et al. Inlet buzz and combustion oscillation in an axisymmetric ramjet engine[C]∥ 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
185 | NEAVES M, MCRAE D, EDWARDS J. High-speed inlet unstart calculations using an implicit solution adaptive mesh algorithm[C]∥ 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
186 | 常军涛, 鲍文, 崔涛, 等. 抽吸对高超声速进气道抗反压能力的影响[J]. 航空动力学报, 2008, 23(3): 505-509. |
CHANG J T, BAO W, CUI T, et al. Effect of suctions on maximum backpressure ratios of hypersonic inlets[J]. Journal of Aerospace Power, 2008, 23(3): 505-509 (in Chinese). | |
187 | 梁德旺, 李博. 高超声速进气道隔离段反压的前传模式及最大工作反压[J]. 空气动力学学报, 2006, 24(4): 454-460. |
LIANG D W, LI B. Back pressure propagation mode and maximum working back pressure of hypersonic inlet isolator[J]. Acta Aerodynamica Sinica, 2006, 24(4): 454-460 (in Chinese). | |
188 | EMAMI S, TREXLER C A, AUSLENDER A H, et al. Experimental investigation of inlet-combustor isolators for a dual-mode scramjet at a Mach number of 4: NASA-TP-3502[R]. Washington, D. C.: NASA, 1995. |
189 | 辜天来, 张帅, 郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 2016, 50(7): 1418-1424. |
GU T L, ZHANG S, ZHENG Y. Back pressure characteristics of jaws inlet with constant-area isolator[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(7): 1418-1424 (in Chinese). | |
190 | 王卫星, 顾强, 郭荣伟. 内转式进气道流动控制研究[J]. 推进技术, 2017, 38(5): 961-967. |
WANG W X, GU Q, GUO R W. Study of flow control of inward turning inlet[J]. Journal of Propulsion Technology, 2017, 38(5): 961-967 (in Chinese). | |
191 | 朱婷, 王卫星, 张仁涛, 等. 唇罩内型面对内转式进气道流动特性影响研究[J]. 推进技术, 2019, 40(10): 2226-2234. |
ZHU T, WANG W X, ZHANG R T, et al. Effects of internal surface of cowl on flow characteristics of inward turning inlet[J]. Journal of Propulsion Technology, 2019, 40(10): 2226-2234 (in Chinese). | |
192 | 王卫星, 朱婷, 张仁涛, 等. 高超声速内转式进气道型面流场重构[J]. 航空学报, 2020, 41(3): 123493. |
WANG W X, ZHU T, ZHANG R T, et al. Flow field reconstruction of hypersonic inward turning inlet based on configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123493 (in Chinese). | |
193 | ZHANG E L, LI Z F, YANG J M, et al. Influence of wall temperature on the flow characteristics of a hypersonic inward turning inlet[C]∥ 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
194 | TREFNY C J. CFD simulation of an inward-turning supersonic inlet unstart at flight Mach number 1.7[C]∥AIAA Propulsion and Energy 2020 Forum. Reston:AIAA, 2020. |
195 | 王卫星, 刘佳思, 刘精彩, 等. 基于涡流发生器的内转式进气道流场组织研究[J]. 推进技术, 2024, 45(11): 30-45. |
WANG W X, LIU J S, LIU J C, et al. Flow field organization of inward turning inlet based on vortex generator[J]. Journal of Propulsion Technology, 2024, 45(11): 30-45 (in Chinese). | |
196 | 田方超. 内转式高超声速进气道的不起动问题研究[D]. 南京: 南京航空航天大学, 2013. |
TIAN F C. Study on starting problem of internal rotating hypersonic inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). | |
197 | YANG S H, ZHANG W Z, CHEN J, et al. Experimental testing of a hypersonic inward turning inlet with water-drop like shape to circular shape transition[C]∥ 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2015. |
198 | 卫锋, 贺旭照, 陈军, 等. 微修形异型转圆内转式进气道的设计与试验研究[J]. 推进技术, 2017, 38(6): 1218-1225. |
WEI F, HE X Z, CHEN J, et al. Design and experimental study of minimized shape transformation inward turning inlet with abnormity entrance to circle exit[J]. Journal of Propulsion Technology, 2017, 38(6): 1218-1225 (in Chinese). | |
199 | HE X Z, ZHOU Z, QIN S, et al. Design and experimental study of a practical osculating inward cone waverider inlet[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1582-1590. |
200 | 向先宏, 钱战森, 张铁军. TBCC进气道模态转换气动技术研究综述[J]. 航空科学技术, 2017, 28(1): 10-18. |
XIANG X H, QIAN Z S, ZHANG T J. An overview of turbine-based combined cycle (TBCC) inlet mode transition aerodynamic technology[J]. Aeronautical Science & Technology, 2017, 28(1): 10-18 (in Chinese). | |
201 | WALKER S, TANG M, MORRIS S, et al. Falcon HTV-3X—A reusable hypersonic test bed[C]?∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
202 | MAMPLATA C, TANG M. Two steps instead of a giant leap—An approach for air breathing hypersonic flight[C]∥ 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2011. |
203 | WALKER S, TANG M, MAMPLATA C. TBCC propulsion for a Mach 6 hypersonic airplane[C]?∥ 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2009. |
204 | MISHORY J. DARPA seeks to develop, test reusable hypersonic propulsion system[J]. Inside the Pentagon, 2016, 32(36): 4. |
205 | 张升升, 郑雄, 吕雅, 等. 国外组合循环动力技术研究进展[J]. 科技导报, 2020, 38(12): 33-53, 181. |
ZHANG S S, ZHENG X, Lü Y, et al. Research progress of oversea combined cycle propulsion technology[J]. Science & Technology Review, 2020, 38(12): 33-53, 181 (in Chinese). | |
206 | 左逢源, 黄国平, 陈杰, 等. 基于内乘波概念的TBCC进气道过渡模态研究[J]. 工程热物理学报, 2015, 36(2): 274-278. |
ZUO F Y, HUANG G P, CHEN J, et al. Based on the concept of waverider TBCC inlet mode transition study[J]. Journal of Engineering Thermophysics, 2015, 36(2): 274-278 (in Chinese). | |
207 | HUANG H H, HUANG G P, ZUO F Y, et al. Research on a novel internal waverider TBCC inlet for ramjet mode[C]∥ 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016. |
208 | HUANG H H, HUANG G P, ZUO F Y, et al. CFD simulation of TBCC inlet based on internal WaveRider concept[C]∥ 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
209 | 乐婷, 黄国平, 黄慧慧. 内乘波式内并联TBCC进气道变几何规律优化分析[J]. 工程热物理学报, 2017, 38(12): 2583-2587. |
YUE T, HUANG G P, HUANG H H. The optimization analysis of over TBCC variable geometry rules based on internal waverider inlet[J]. Journal of Engineering Thermophysics, 2017, 38(12): 2583-2587 (in Chinese). | |
210 | 马涛. 宽域内收缩进气道一体化设计的关键技术研究[D]. 南京: 南京航空航天大学, 2019. |
MA T. Research on key technology of integrated design of wide-range contraction inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
211 | 何墨凡, 李宪开, 尹超, 等. 一种内转式TBCC进气道气动设计及分析[J]. 飞机设计, 2021, 41(4): 56-64, 73. |
HE M F, LI X K, YIN C, et al. Areodynamic design and analysis of a TBCC inlet based on inward-turning inlet[J]. Aircraft Design, 2021, 41(4): 56-64, 73 (in Chinese). | |
212 | 邬凤林. 宽范围可调内转进气道设计方法研究[D]. 南京: 南京理工大学, 2017. |
WU F L. Study on design method of wide range adjustable internal rotation inlet[D]. Nanjing: Nanjing University of Science and Technology, 2017 (in Chinese). | |
213 | 向先宏, 刘畅, 李雪飞, 等. 一种基于三元内转折进气道的内并联TBCC模态转换设计技术[C]∥ 中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集——发动机内流气动技术. 北京: 中国空天动力联合会, 2017: 152-159. |
XIANG X H, LIU C, LI X F, et al. Investigation of an internal over-under TBCC mode transition design method based on 3D inward-turning inlet[C]∥ Proceedings of the 38th Technical Exchange Conference and the 2nd Aerospace Power Joint Conference of China Aerospace Third Professional Information Network-Engine Internal Flow Aerodynamics Technology. Beijing: Aerospace Propulsion Technology Information Society of China, 2017: 152-159 (in Chinese). | |
214 | 朱伟, 王霄, 华正旭, 等. 宽速域组合动力TBCC新型三维内转式进气道设计分析[J]. 飞机设计, 2019, 39(3): 13-17, 38. |
ZHU W, WANG X, HUA Z X, et al. The design and analysis of wide speed range turbine based combine cycle three-dimensional inward turning inlet[J]. Aircraft Design, 2019, 39(3): 13-17, 38 (in Chinese). | |
215 | 张旭. 三维内转TBCC进气道设计技术研究[D]. 厦门: 厦门大学, 2019. |
ZHANG X. Research on design technology of three-dimensional internal rotating TBCC inlet[D]. Xiamen: Xiamen University, 2019 (in Chinese). | |
216 | HU Z C, LI Z L, TANG Y Q, et al. Conceptual design methodology and performance evaluation of turbine-based combined cycle inward-turning inlet with twin-design points[J]. Aerospace Science and Technology, 2024, 152: 109309. |
217 | O’BRIEN T, DAVIS D, COLVILLE J. The advanced combined-cycle integrated inlet test program-test results[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2008. |
218 | SIEBENHAAR A, BOGAR T. Integration and vehicle performance assessment of the aerojet “TriJet” combined-cycle engine[C]∥ 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009. |
219 | BULMAN M, SIEBENHAAR A. Combined cycle propulsion: Aerojet innovations for practical hypersonic vehicles[C]∥ 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
220 | 闵浩, 孙波, 李嘉新, 等. 一种内并联型内转进气道通道间干扰特性研究[J]. 推进技术, 2018, 39(12): 2695-2702. |
MIN H, SUN B, LI J X, et al. Investigation on interference characteristics among channels of a over-under inward turning inlet[J]. Journal of Propulsion Technology, 2018, 39(12): 2695-2702 (in Chinese). | |
221 | ZHU C X, ZHANG X, KONG F, et al. Design of a three-dimensional hypersonic inward-turning inlet with tri-ducts for combined cycle engines[J]. International Journal of Aerospace Engineering, 2018, 2018(1): 7459141. |
222 | ZHU C X, ZHANG H F, HU Z C, et al. Analysis on the low speed performance of an inward-turning multiduct inlet for turbine-based combined cycle engines[J]. International Journal of Aerospace Engineering, 2019, 2019: 6728387. |
223 | 郭峰, 桂丰, 尤延铖, 等. 一种涡轮基组合动力的整机低速风洞试验研究[J]. 推进技术, 2019, 40(11): 2436-2443. |
GUO F, GUI F, YOU Y C, et al. Experimental study of TBCC engine performance in low speed wind tunnel[J]. Journal of Propulsion Technology, 2019, 40(11): 2436-2443 (in Chinese). | |
224 | 胡占仓, 蔡泽君, 王天洋, 等. 转级模式对三维内转组合进气道模态转换性能的影响分析[J]. 推进技术, 2020, 41(12): 2670-2680. |
HU Z C, CAI Z J, WANG T Y, et al. Analysis of effects of mode transition type on performance of mode transition for 3D inward-turning combined inlet[J]. Journal of Propulsion Technology, 2020, 41(12): 2670-2680 (in Chinese). | |
225 | 蔡泽君, 胡占仓, 余联郴, 等. XTER内收缩组合进气道设计理念及气动特性[J]. 空气动力学学报, 2022, 40(1): 218-231. |
CAI Z J, HU Z C, YU L C, et al. Design concept and aerodynamic characteristics of XTER TBCC inlet[J]. Acta Aerodynamica Sinica, 2022, 40(1): 218-231 (in Chinese). | |
226 | HE Z M, ZHANG J L, SUN H F. Optimal control of TBCC engines in mode transition[J]. Energies, 2023, 16(4): 1791. |
227 | 尹泽勇, 尤延铖, 朱呈祥, 等. 面向高超声速民机的多通道双涡轮引射冲压组合动力[J]. 航空学报, 2023, 44(2): 627181. |
YIN Z Y, YOU Y C, ZHU C X, et al. Multi-ducted twin-turbines ejector-ramjet/scramjet combined cycle engine for hypersonic civil vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 627181 (in Chinese). |
/
〈 |
|
〉 |