Solid Mechanics and Vehicle Conceptual Design

Ratio of propeller thrust to total thrust of ducted propellers

  • Xudong LI ,
  • Wei ZHONG ,
  • Zhen WANG ,
  • Tongguang WANG ,
  • Jinlong LI
Expand
  • 1.Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design,College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.Nanjing Xunli Aviation Technology Co. ,Ltd. ,Nanjing 211113,China
    3.Tianchang Xingzhou Aeronautical Technology Co. ,Ltd. ,Tianchang 239300,China

Received date: 2024-06-17

  Revised date: 2024-08-13

  Accepted date: 2024-11-05

  Online published: 2024-11-18

Supported by

National Key R&D Program(2022YFE0207000)

Abstract

The design of ducted propellers is much more challenging than that of isolated propellers, as the complexity of the interference between the duct and the propeller makes it difficult to determine the induced velocity at the propeller. In the present study, a momentum model of ducted propellers is established. Based on the model, the ratio of the propeller thrust to the total thrust of ducted propellers, denoted as k, is analyzed, and its relationship with the induced velocity at the propeller is obtained. Furthermore, the variation law of k in the hovering and forward flight states is revealed by numerical analysis based on Computational Fluid Dynamics (CFD) simulations. For a given duct configuration, the following variation law of k is found: in the hovering state, k hardly varies with the change of the propeller’s rotational speed; in the forward flight state, the k value and the thrust coefficient of the ducted propeller show a linear relationship. The linear relationship is independent of both the rotational speed and the incoming wind velocity, which is very beneficial for establishing an engineering model about the value of k. In addition, the uniform law of k values for ducted propellers with different number of blades is revealed. The present study enriches the theoretical understandings about ducted propellers and has potential values for application in the ducted propeller design.

Cite this article

Xudong LI , Wei ZHONG , Zhen WANG , Tongguang WANG , Jinlong LI . Ratio of propeller thrust to total thrust of ducted propellers[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(4) : 230829 -230829 . DOI: 10.7527/S1000-6893.2024.30829

References

1 FAN W, XU B, XIANG C L, et al. A novel approach to the attitude stabilization structure for ducted-fan operative aerial robots: Finding improvements for modeling error and strong external transient disturbance[J]. Chinese Journal of Aeronautics202235(2): 250-264.
2 ZHANG T, BARAKOS G N. Review on ducted fans for compound rotorcraft[J]. The Aeronautical Journal2020124(1277): 941-974.
3 许和勇, 叶正寅. 涵道螺旋桨与孤立螺旋桨气动特性的数值模拟对比[J]. 航空动力学报201126(12): 2820-2825.
  XU H Y, YE Z Y. Numerical simulation and comparison of aerodynamic characteristics between ducted and isolated propellers[J]. Journal of Aerospace Power201126(12): 2820-2825 (in Chinese).
4 GONG J, DING J M, WANG L Z. Propeller-duct interaction on the wake dynamics of a ducted propeller[J]. Physics of Fluids202133(7): 074102.
5 CHANG I C, RAJAGOPALAN R. CFD analysis for ducted fans with validation[C]∥ Proceedings of the 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003.
6 LEE T E. Design and performance of a ducted coaxial rotor in hover and forward flight[D]. Washington, D. C.: University of Maryland, 2010.
7 叶坤, 叶正寅, 屈展. 涵道气动优化设计方法[J]. 航空动力学报201328(8): 1828-1835.
  YE K, YE Z Y, QU Z. Aerodynamic optimization method for duct design[J]. Journal of Aerospace Power201328(8): 1828-1835 (in Chinese).
8 陈胜久, 杨佑绪, 张兴翠, 等. 一种考虑滑流效应的螺旋桨设计方法及应用[J/OL]. 北京航空航天大学学报, (2023-12-08)[2024-04-29]. .
  CHEN S J, YANG Y X, ZHANG X C, et al. A propeller design method considering slipstream effect and its application[J/OL]. Beijing University of Aeronautics and Astronautics, (2023-12-08) [2024-04-29]. (in Chinese).
9 王晓锋, 屠秋野, 唐狄毅, 等. 一种涵道螺旋桨优化设计新方法研究[J]. 航空发动机200430(2): 19-24.
  WANG X F, TU Q Y, TANG D Y, et al. A special method of optimum design for ducted propeller[J]. Aeroengine200430(2): 19-24 (in Chinese).
10 姬乐强, 李建波, 方毅. 涵道风扇气动特性及其参数优化设计[J]. 科学技术与工程201919(9): 245-251.
  JI L Q, LI J B, FANG Y. The aerodynamic characteristics and parameter optimization design of ducted fan[J]. Science Technology and Engineering201919(9): 245-251 (in Chinese).
11 郭佳豪, 周洲, 范中允. 一种耦合CFD修正的螺旋桨快速设计方法[J]. 航空学报202041(2): 67-76.
  GUO J H, ZHOU Z, FAN Z Y. A quick design method of propeller coupled with CFD correction[J]. Acta Aeronautica et Astronautica Sinica202041(2): 67-76 (in Chinese).
12 CHO L, LEE S, CHO J. Numerical and experimental analyses of the ducted fan for the small VTOL UAV propulsion[J]. Transactions of the Japan Society for Aeronautical and Space Sciences201356(6): 328-336.
13 EPPS B P, KIMBALL R W. Unified rotor lifting line theory[J]. Journal of Ship Research201357(4): 181-201.
14 STUBBLEFIELD J M. Numerically-based ducted propeller design using vortex lattice lifting line theory[D]. Cambridge: Massachusetts Institute of Technology, 2008.
15 刘沛清, 鲁金华. 涵道螺旋桨气动计算的片条理论及其应用[C]∥第二十二届全国直机年会学术论文集. 北京: 中国航空学会, 2006: 65-75.
  LIU P Q, LU J H. Strip theory and application for shrouded propeller aerodynamic design[C]∥22nd Helicopter Annual Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2006: 65-75 (in Chinese) .
16 CONEY W B. A method for the design of a class of optimum marine propulsors[D]. Cambridge: Massachusetts Institute of Technology, 1989.
17 王国强, 张建华. 导管螺旋桨的升力面/面元偶合设计方法[J]. 船舶力学20037(4): 21-27.
  WANG G Q, ZHANG J H. A design method of ducted propeller by coupled lifting surface theory/panel method[J]. Journal of Ship Mechanics20037(4): 21-27 (in Chinese).
18 EPPS B. On the rotor lifting line wake model[J]. Journal of Ship Production and Design201733(1): 31-45.
19 ZHANG T, BARAKOS G N. High-fidelity numerical analysis and optimisation of ducted propeller aerodynamics and acoustics[J]. Aerospace Science and Technology2021113: 106708.
20 DOGRUOZ M B, SHANKARAN G. Computations with the multiple reference frame technique: Flow and temperature fields downstream of an axial fan[J]. Numerical Heat Transfer, Part A: Applications, 201771(5): 488-510.
21 高永卫, 黄灿金, 魏闯. 一种涵道螺旋桨的简便设计方法[J]. 航空工程进展20134(3): 352-357.
  GAO Y W, HUANG C J, WEI C. A simple approach to the design of ducted propeller[J]. Advances in Aeronautical Science and Engineering20134(3): 352-357 (in Chinese).
22 郭佳豪, 周洲, 李旭. 一种涵道螺旋桨桨叶高效设计方法[J]. 航空学报202243(7): 125253.
  GUO J H, ZHOU Z, LI X. An efficient design method for blade of ducted propeller[J]. Acta Aeronautica et Astronautica Sinica202243(7): 125253 (in Chinese).
23 陈炜锋, 俞志明, 钟伯文, 等. 一种倾转涵道螺旋桨的综合设计方法[J/OL]. 航空动力学报, (2023-09-04)[2024-05-29]. .
  CHEN W F, YU Z M, ZHONG B W, et al. Comprehensive design method for tilting ducted propeller[J/OL]. Journal of Aerospace Power, (2023-09-04)[2024-05-29]. (in Chinese).
24 GUERRERO I, LONDENBERG W K, GELHAUSEN P, et al. A powered lift aerodynamic analysis for the design of ducted fan UAVs[C]∥ Proceedings of the 2nd AIAA \“Unmanned Unlimited\” Conf. and Workshop & Exhibit. Reston: AIAA, 2003.
25 ZHAO H, BIL C. Aerodynamic design and analysis of a VTOL ducted-fan UAV[C]∥ 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008.
26 LEISHMANN J G. Principles of helicopter aerodynamics[M]. London: Cambridge University Press, 2006.
27 GOODSON K W, GRUNWALD K. Aerodynamic loads on an isolated shrouded-propeller configuration for angles of attack from-10 deg to 110 deg: NASA TN D-995 [R]. Washington, D.C.: NASA, 1962.
28 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
29 WILCOX D C. Turbulence modeling for CFD[M]. La Canada, CA: DCW industries, 1998.
30 LAUNDER B E, SPALDING D B. Lectures in mathematical models of turbulence[J]. London: Academic Press, 1972.
Outlines

/