Fluid Mechanics and Flight Mechanics

Experiments on afterburner combustion performance with self-excited sweeping nozzle in high speed and medium temperature air flow

  • Shiqi WANG ,
  • Qinglan WEN ,
  • Peng ZHAO ,
  • Yixin CHENG ,
  • Liang MA ,
  • Zhigang JIA ,
  • Quan WEN
Expand
  • 1.Aero Engine Academy of China,Beijing 101304,China
    2.AECC Guiyang Engine Design Research Institute,Guiyang 550081,China
    3.Institute for Aero Engine,Tsinghua University,Beijing 100084,China
    4.School of Energy and Power Engineering,Beihang University,Beijing 100191,China
    5.College of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,China
E-mail: wangsq6@126.com

Received date: 2024-09-24

  Revised date: 2024-10-09

  Accepted date: 2024-10-25

  Online published: 2024-10-29

Supported by

AECC Innovation Funds(ZZCX-2023-033);National Natural Science Foundation of China(52306052)

Abstract

To further prove the effectiveness of self-excited sweeping nozzles in enhancing afterburner combustion performances under the constraints of practical application conditions, this study first designed an afterburner fuel spray bar containing 10 self-excited sweeping nozzles, and then a plain-orifice spray bar was designed for comparison with the same nozzle number, injection locations, and total flow rate. The flow rate, frequency, and injection angle of both spray bars were measured and analyzed. Then, under the typical bypass airflow conditions of a turbofan engine with an airflow of high speed and medium temperature, combustion efficiency at the exit cross-section, temperature distribution along the path, and dynamic wall pressure fluctuations were measured using on a rectangular afterburner combustion performance test bench with the plain-orifice and self-excited sweeping spray bars respectively. The results showed that the self-excited sweeping spray bar significantly expanded the blowout limit of the combustion chamber compared to the plain-orifice spray bar, and improved combustion efficiency across the entire fuel-to-air equivalence ratio range, with a maximum improvement of 8.5%, and the gas temperature along the path increased by up to 181 ℃. At a higher equivalence ratio, the plain-orifice spray bar induced a low-frequency longitudinal thermoacoustic coupling oscillation at around 140 Hz, with a pressure relative pulsation amplitude of 16.3%. In contrast, under the same conditions, the self-excited sweeping spray bar reduced the pressure relative pulsation amplitude to only 2.3%, effectively suppressing combustion instability. This study fully demonstrates the notable results of self-excited sweeping nozzles in improving combustion efficiency, expanding the blowout limit and suppressing combustion instability of the afterburner.

Cite this article

Shiqi WANG , Qinglan WEN , Peng ZHAO , Yixin CHENG , Liang MA , Zhigang JIA , Quan WEN . Experiments on afterburner combustion performance with self-excited sweeping nozzle in high speed and medium temperature air flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(9) : 131261 -131261 . DOI: 10.7527/S1000-6893.2024.31261

References

1 季鹤鸣, 刘玉英. 涡扇加力与多功能排气装置[M]. 上海: 上海交通大学出版社, 2021.
  JI H M, LIU Y Y. Afterburner and multi-function exhaust system of turbofan engine[M]. Shanghai: Shanghai Jiao Tong University Press, 2021 (in Chinese).
2 尚守堂, 何小民. 航空发动机加力燃烧室设计[M]. 北京: 科学出版社, 2022.
  SHANG S T, HE X M. Design of afterburner for aero-engine[M]. Beijing: Science Press, 2022 (in Chinese).
3 金如山, 索建秦. 先进燃气轮机燃烧室[M]. 北京: 航空工业出版社, 2016.
  JIN R S, SUO J Q. Advanced gas turbine combustor[M]. Beijing: Aviation Industry Press, 2016 (in Chinese).
4 黄勇, 林宇震, 樊未军, 等. 燃烧与燃烧室[M]. 1版. 北京: 北京航空航天大学出版社, 2009.
  HUANG Y, LIN Y Z, FAN W J, et al. Combustion and combustion chamber [M]. 1st ed. Beijing: Beijing University of Aeronautics & Astronautics Press, 2009 (in Chinese).
5 SONG J, JUNG C, HWANG J, et al. An experimental study on the flame dynamics with V-gutter type flameholder in the model combustor[C]∥47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011.
6 KIEL B, GARWICK K, GORD J, et al. A detailed investigation of bluff body stabilized flames?[C]?∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
7 INAMURA T, TAKAHASHI M, KUMAKAWA A. Combustion characteristics of a liquid-fueled ramjet combustor[J]. Journal of Propulsion and Power200117(4): 860-868.
8 张孝春, 孙雨超, 刘涛. 先进加力燃烧室设计技术综述[J]. 航空发动机201440(2): 24-30, 60.
  ZHANG X C, SUN Y C, LIU T. Summary of advanced afterburner design technology[J]. Aeroengine201440(2): 24-30, 60 (in Chinese).
9 罗莲军, 刘玉英, 张文龙, 等. 喷油杆与凹腔支板稳定器近距匹配雾化特性[J]. 航空动力学报201328(11): 2462-2467.
  LUO L J, LIU Y Y, ZHANG W L, et al. Atomization characteristics of fuel injector and cavity-based strut flame stabilizer under close-range matching condition[J]. Journal of Aerospace Power201328(11): 2462-2467 (in Chinese).
10 LOVETT J, BROGAN T, PHILIPPONA D, et al. Development needs for advanced afterburner designs[C]∥40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004.
11 LEE J, LIN K C, EKLUND D. Challenges in fuel injection for high-speed propulsion systems[J]. AIAA Journal201553(6): 1405-1423.
12 刘小勇, 王明福, 刘建文, 等. 超燃冲压发动机研究回顾与展望[J]. 航空学报202445(5): 529878.
  LIU X Y, WANG M F, LIU J W, et al. Review and prospect of research on scramjet[J]. Acta Aeronautica et Astronautica Sinica202445(5): 529878 (in Chinese).
13 颜应文, 韩宗英, 刘云鹏, 等. 一种采用圆弧形扇形喷嘴和凹腔结构加力燃烧室: CN201810219294.5[P]. 2020-03-17.
  YAN Y W, HAN Z Y, LIU Y P, et al. An afterburner with a circular arc fan-shaped nozzle and a cavity structure : CN201810219294.5[P]. 2020-03-17 (in Chinese).
14 韩宗英, 颜应文, 刘云鹏, 等. 一种采用平面扇形喷嘴供油的加力燃烧室: ZL201810219559.1[P]. 2018-11-20.
  HAN Z Y, YAN Y W, LIU Y P, et al. An afterburner fueled by fan nozzles: ZL201810219559.1[P]. 2018-11-20 (in Chinese).
15 邸东, 刘雨辰, 王亚军, 等. 加力用扇形喷嘴雾化特性试验[J]. 航空动力学报202035(3): 457-470.
  DI D, LIU Y C, WANG Y J, et al. Experiment on atomization characteristics of fan nozzle[J]. Journal of Aerospace Power202035(3): 457-470 (in Chinese).
16 王晓洁. 高温高速气流中直射式喷嘴与扇形喷嘴的雾化特性试验研究[D]. 镇江: 江苏大学, 2022.
  WANG X J. Experimental study on atomization characteristics of direct nozzle and fan nozzle in high temperature and high speed airflow[D]. Zhenjiang: Jiangsu University, 2022 (in Chinese).
17 施刚强, 吴杰, 胡喆, 等. 高温高速来流条件下扇形喷嘴雾化特性研究[J]. 推进技术202445(6): 154-163.
  SHI G Q, WU J, HU Z, et al. Atomization characteristics of fan-shaped nozzle under high-speed and high-temperature?[J]. Journal of Propulsion Technology202445(6): 154-163 (in Chinese).
18 CHANG J L, HE L J, CHEN L H, et al. Atomization of liquid pulsed jet in subsonic crossflow[J]. 202313(5): 055117.
19 王士奇, 陈健, 杨谦, 等. 自激扫掠喷嘴: 航空发动机燃油喷射新选择[J]. 航空动力2023(3): 12-15.
  WANG S Q, CHEN J, YANG Q, et al. Self-excited sweeping nozzle: a new choice for aero engine fuel injection[J]. Aerospace Power2023(3): 12-15 (in Chinese).
20 GREGORY J, TOMAC M N. A review of fluidic oscillator development and application for flow control[C]?∥ 43rd Fluid Dynamics Conference. Reston: AIAA, 2013.
21 WOSZIDLO R, OSTERMANN F, SCHMIDT H J. Fundamental properties of fluidic oscillators for flow control applications[J]. AIAA Journal201957(3): 978-992.
22 王士奇, 温泉. 新型自激扫掠喷嘴及其工作特性研究[J]. 推进技术202344(10): 107-116.
  WANG S Q, WEN Q. Working characteristics of a new self-excited sweeping nozzle[J]. Journal of Propulsion Technology202344(10): 107-116 (in Chinese).
23 王士奇, 温泉, 韩啸. 一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构: ZL202110519916.8[P]. 2021-08-20.
  WANG S Q, WEN Q, HAN X, et al. An afterburner structure with self-excited sweeping oscillating fuel injection nozzles:ZL202110519916.8?[P]. 2021-08-20 (in Chinese).
24 王士奇, 温泉, 刘英杰, 等. 一种亚毫米自激扫掠喷射振荡器:ZL202210041292.8[P]. 2022-04-19.
  WANG S Q, WEN Q, LIU Y J, et al. A self-excited sweeping spray oscillator in sub-milimeter scale:ZL202210041292.8[P]. 2022-04-19 (in Chinese).
25 王士奇, 温泉. 自激扫掠喷嘴工作特性的数值和实验研究[J]. 航空动力学报, doi: 10.13224/j.cnki.jasp.20220923 .
  WANG S Q, WEN Q. Numerical and experimental study on working characteristics of self-excited sweeping nozzle[J]. Journal of Aerospace Power, doi: 10.13224/j.cnki.jasp.20220923 (in Chinese).
26 王士奇, 温泉, 贾志刚, 等. 基于自激扫掠喷嘴的加力燃烧效率实验研究[J]. 航空学报202546(1):130621.
  WANG S Q, WEN Q, JIA Z G, et al. Experimental study on the afterburner efficiency based on self-excited sweeping nozzle[J]. Acta Aeronautica et Astronautica Sinica202546(1):130621 (in Chinese).
27 德图仪器国际贸易(上海)有限公司. 德图Testo 350 烟气分析仪操作手册[EB/OL]. [2024-10-16]. .
  Testo Instruments International Trading (Shanghai) Co., Ltd.. Testo 350 flue gas analyzer instruction manual[EB/OL]. [2024-10-16]. .
28 许军民. 冲压发动机燃烧室火焰稳定器试验研究和数值模拟[D]. 西安: 西安电子科技大学, 2007.
  XU J M. Experimental study and numerical simulation of flame stabilizer in ramjet combustion chamber[D]. Xi’an: Xidian University, 2007 (in Chinese).
Outlines

/