special column

Multiple heat sink matching and regulation strategies for distributed thermal management system of hydrogen hybrid power system

  • Haiwang LI ,
  • Shenghan GAO ,
  • Gang XIE ,
  • Mingxing YU ,
  • Xunan HE
Expand
  • 1.Research Institute of Aero-Engine,Beihang University,Beijing 100191,China
    2.Flying College,Beihang University,Beijing 100191,China
    3.COMAC Beijing Aircraft Technology Research Institute,Beijing 102211,China

Received date: 2024-07-17

  Revised date: 2024-08-16

  Accepted date: 2024-10-18

  Online published: 2024-10-23

Abstract

The introduction of a large number of multi-electric devices in hydrogen hybrid airplanes leads to the problems of heat sink mismatch of insufficient heat sink in the climb condition and redundant heat sink in the cruise condition, making it hard to meet the cooling demand. To solve these thermal management problems, this paper carries out research on the multi-heat sink matching scheme and control strategy by modelling the distributed thermal management system of mainline airliner hydrogen hybrid power system. Firstly, according to the distributed thermal management system architecture, the solution for middle and final heat sink matching by increasing tank capacity is proposed. Secondly, a simulation model for the distributed thermal management system is established using MATLAB-Simulink software, and the relationship between the middle heat sink capacity and the maximum temperature of the fuel cell is analyzed. Finally, an on-off control strategy is designed based on the enlarged tank. The results show that the distributed thermal management system based on the proposed multi-heat sink matching scheme can meet the cooling demands of the hydrogen hybrid power system equipment by increasing tank capacity. The on-off control strategy can reduce the maximum power of the thermal management system by 16.7%, the energy consumption during the flight profile by 55.7%, and the fuel temperature by up to 4.6 °C, as well as fuel compensation.

Cite this article

Haiwang LI , Shenghan GAO , Gang XIE , Mingxing YU , Xunan HE . Multiple heat sink matching and regulation strategies for distributed thermal management system of hydrogen hybrid power system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(9) : 630951 -630951 . DOI: 10.7527/S1000-6893.2024.30951

References

1 ASLI M, K?NIG P, SHARMA D, et al. Thermal management challenges in hybrid-electric propulsion aircraft[J]. Progress in Aerospace Sciences2024144: 100967.
2 TIWARI S, PEKRIS M J, DOHERTY J J. A review of liquid hydrogen aircraft and propulsion technologies[J]. International Journal of Hydrogen Energy202457: 1174-1196.
3 COUTINHO M, BENTO D, SOUZA A, et al. A review on the recent developments in thermal management systems for hybrid-electric aircraft[J]. Applied Thermal Engineering2023227: 120427.
4 HO Y H, LIN T, HILL B, et al. Thermal benefits of advanced integrated fuel system using JP-8+100 fuel[C]∥1997 World Aviation Congress. Reston: AIAA, 1997: 5507.
5 GERMAN B. A tank heating model for aircraft fuel thermal systems with recirculation[C]∥49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: 641.
6 SEKI N, MORIOKA N, SAITO H, et al. A study of air/fuel integrated thermal management system[C]∥SAE Technical Paper Series. Warrendale: SAE International, 2015.
7 ALHARBI S, ELSAYED M L, CHOW L C. Exergoeconomic analysis and optimization of an integrated system of supercritical CO2 Brayton cycle and multi-effect desalination[J]. Energy2020197: 117225.
8 HUA J Y, LI G, CHEN Y P, et al. Optimization of thermal parameters of boiler in triple-pressure Kalina cycle for waste heat recovery[J]. Applied Thermal Engineering201591: 1026-1031.
9 袁美名, 常士楠, 洪海华, 等. 飞机机载综合热管理系统仿真研究[J]. 航空科学技术200819(4): 30-34.
  YUAN M M, CHANG S N, HONG H H, et al. Simulation of aircraft integrated thermal management system[J]. Aeronautical Science & Technology200819(4): 30-34 (in Chinese).
10 胡晓辰. 基于MATLAB仿真平台的动力与热管理系统建模及性能分析[D]. 南京: 南京航空航天大学, 2017: 72.
  HU X C. Modeling and performance analysis of power and thermal management system based on MATLAB simulation platform[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 72 (in Chinese).
11 董桥桥. 混合动力总成热管理系统优化设计[D]. 杭州: 浙江大学, 2019: 9-10.
  DONG Q Q. Optimal design of thermal management system for hybrid powertrain[D]. Hangzhou: Zhejiang University, 2019: 9-10 (in Chinese).
12 刘如佳, 刘向农, 李晓萍, 等. 基于Simscape物理仿真的发动机热管理系统及控制特性研究[J]. 合肥工业大学学报(自然科学版)202346(10): 1343-1348, 1361.
  LIU R J, LIU X N, LI X P, et al. Research on engine thermal management system and control characteristics based on Simscape physical simulation[J]. Journal of Hefei University of Technology (Natural Science)202346(10): 1343-1348, 1361 (in Chinese).
13 张宝斌, 刘佳鑫, 李建功, 等. 燃料电池冷却方法及热管理控制策略进展[J]. 电池201949(2): 158-162.
  ZHANG B B, LIU J X, LI J G, et al. Development of fuel cell cooling method and thermal management control strategy[J]. Battery Bimonthly201949(2): 158-162 (in Chinese).
14 王星, 孙俊, 陈宁芳, 等. 基于Simscape的质子交换膜燃料电池冷却系统建模与温度控制策略[J]. 储能科学与技术202312(3): 857-869.
  WANG X, SUN J, CHEN N F, et al. Modeling of a proton exchange membrane fuel cell cooling system based on the Simscape temperature control strategy[J]. Energy Storage Science and Technology202312(3): 857-869 (in Chinese).
15 PLANèS T, HABRARD V, DELBECQ S, et al. Thermal management system models for overall aircraft design[C]∥AIAA Aviation 2021 Forum. Reston: AIAA, 2021.
16 RHEAUME J M, LENTSII C E. Design and simulation of a commercial hybrid electric aircraft thermal management system[C]∥2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2018: 1-9.
17 刘莉, 杜孟尧, 张晓辉, 等. 太阳能/氢能无人机总体设计与能源管理策略研究[J]. 航空学报201637(1): 144-162.
  LIU L, DU M Y, ZHANG X H, et al. Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J]. Acta Aeronautica et Astronautica Sinica201637(1): 144-162 (in Chinese).
18 陈洪伟. 混合动力无人飞机的能源管理系统设计与研究[D]. 镇江: 江苏大学, 2020: 8-9.
  CHEN H W. Design and research of energy management system for hybrid unmanned aircraft[D]. Zhenjiang: Jiangsu University, 2020: 8-9 (in Chinese).
19 SHI M X, SANDERS M, ALAHMAD A, et al. Design and analysis of the thermal management system of a hybrid turboelectric regional jet for the NASA ULI program[C]∥2020 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2020: 1-24.
20 黄星. 飞机自适应动力与热管理系统能效分析研究[D]. 南京: 南京航空航天大学, 2018: 3-10.
  HUANG X. Research on energy efficiency analysis of aircraft adaptive power and thermal management system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 3-10 (in Chinese).
21 ASLI M, K?NIG P, SHARMA D, et al. Thermal management challenges in hybrid-electric propulsion aircraft[J]. Progress in Aerospace Sciences2024144: 100967.
22 王翔宇, 周兵, 徐向华, 等. 航空发动机燃油回路流动传热特性模拟研究[J]. 工程热物理学报201940(4): 863-869.
  WANG X Y, ZHOU B, XU X H, et al. Simulation on the flow and heat transfer of a simplified aero-engine fuel loop[J]. Journal of Engineering Thermophysics201940(4): 863-869 (in Chinese).
23 宁献文, 徐侃, 王玉莹, 等. 嫦娥五号轻量化泵驱单相流体回路热总线设计及实现[J]. 航空学报202243(12): 126292.
  NING X W, XU K, WANG Y Y, et al. Chang’e-5 complex of lander and ascent vehicle lightweight pumped fluid loop thermal bus: Design and implementation[J]. Acta Aeronautica et Astronautica Sinica202243(12): 126292 (in Chinese).
24 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019: 470-474.
  TAO W Q. Heat transfer[M]. 5th ed. Beijing: Higher Education Press, 2019: 470-474 (in Chinese).
25 张涛. 多电飞机一体化热管理仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 27.
  ZHANG T. Simulation study on integrated thermal management of multi-electric aircraft[D]. Harbin: Harbin Institute of Technology, 2021: 27 (in Chinese).
26 杨胜. 汽车热管理系统半物理仿真试验平台研究[D]. 北京: 清华大学, 2004: 27.
  YANG S. Research on semi-physical simulation test platform of automobile thermal management system[D]. Beijing: Tsinghua University, 2004: 27 (in Chinese).
27 赵维维, 娄德仓, 钟世林. 基于?分析和代偿损失的热管理系统性能评价方法[J]. 航空动力学报202338(12): 2829-2836.
  ZHAO W W, LOU D C, ZHONG S L. Performance evaluation method of thermal management system based on exergy analysis and compensatory loss[J]. Journal of Aerospace Power202338(12): 2829-2836 (in Chinese).
28 王海鹰, 杨永敏, 单亚杰. 航空发动机燃油系统温升特性研究[J]. 制造业自动化201739(7): 92-95, 118.
  WANG H Y, YANG Y M, SHAN Y J. Investigation on fuel temperature rise characteristics of an aero-engine[J]. Manufacturing Automation201739(7): 92-95, 118 (in Chinese).
29 HEERSEMA N, JANSEN R. Thermal management system trade study for SUSAN electrofan aircraft[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
Outlines

/