special column

High-efficiency and high-reliability sonic boom/aerodynamic multidisciplinary optimization method for supersonic civil aircraft

  • Chengjun SHAN ,
  • Tianyu GONG ,
  • Lizhe YI ,
  • Haohui YANG ,
  • Yaosong LONG
Expand
  • School of Aerospace Engineering,Huazhong University of Science and Technology,Wuhan 430037,China

Received date: 2024-04-02

  Revised date: 2024-05-23

  Accepted date: 2024-09-19

  Online published: 2024-09-23

Abstract

One of the key research challenges for supersonic civil aircraft is reducing sonic boom intensity and improving cruise aerodynamic efficiency. In current sonic boom/aerodynamic multidisciplinary optimization studies, there are the issues such as low optimization efficiency in high-fidelity optimization and neglect of large-scale configuration parameters. A high-efficiencyand high-fidelity multidisciplinary optimization method for supersonic civil aircraft is proposed. A self-developed far-field sonic boom propagation program based on the nonlinear Burgers equation, “BoomProp”, is integrated with the near-field flow prediction method using CFD to establish a high-fidelity ground-level sonic boom intensity prediction process. The efficient global constrained multi-objective optimization algorithm based on the Constrained Expected Hypervolume Improvement Matrix (CEHVIM) criterion is adopted and is coupled with the optimal Latin hypercube design method for high-dimensional irregular design spaces, automated layout parameterization, mesh generation, and high-fidelity sonic boom/aerodynamic performance prediction methods, to build a high-efficiencyand high-fidelity multidisciplinary optimization platform for supersonic civil aircraft. Using this platform, multidisciplinary optimization for sonic boom and aerodynamics of wing configurations is conducted, yielding significant improvements in both sonic boom and drag performance. Additionally, a comparison with the NSGA-II multi-objective genetic algorithm based on the Kriging surrogate model comprehensively validates the effectiveness and efficiency of the proposed method.

Cite this article

Chengjun SHAN , Tianyu GONG , Lizhe YI , Haohui YANG , Yaosong LONG . High-efficiency and high-reliability sonic boom/aerodynamic multidisciplinary optimization method for supersonic civil aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(24) : 630573 -630573 . DOI: 10.7527/S1000-6893.2024.30573

References

1 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报202344(2): 626310.
  DING Y L, HAN Z H, QIAO J L, et al. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica202344(2): 626310 (in Chinese).
2 刘秉宜, 高渤程, 潘锐. 国外主要超声速民机经济性研究及对我启示[C]∥ 第六届中国航空科学技术大会论文集. 北京: 中国航空学会, 2023.
  LIU B Y, GAO B C, PAN R. Research on the economics of major foreign supersonic civil aircraft and its implications for China[C]∥ Proceedings of the 6th China Aviation Science and Technology Conference. Beijing:Chinese Society of Aeronautics and Astronautics, 2023 (in Chinese).
3 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报202243(12): 025649.
  ZHANG L W, SONG W P, HAN Z H, et al. Recent progress of sonic boom generation, propagation, and mitigation mechanism?[J]. Acta Aeronautica et Astronautica Sinica202243(12): 025649 (in Chinese).
4 马博平. 超声速低阻低声爆气动布局研究[D]. 西安: 西北工业大学, 2020.
  MA B P. Study on aerodynamic layout of supersonic low resistance low sound explosion[D]. Xi’an: Northwestern Polytechnical University, 2020 (in Chinese).
5 SOBIESZCZANSKI-SOBIESKI J. Multidisciplinary optimization for engineering systems: Achievements and potential[C]∥Optimization: Methods and Applications, Possibilities and Limitations. Berlin: Springer, 1989: 42-62.
6 SOBIESZCZANSKI-SOBIESKI J, CHOPRA I. Multidisciplinary optimization of aeronautical systems[J]. Journal of Aircraft199027(12): 977-978.
7 RAYMER D. Aircraft design: A conceptual approach[M]. 5th ed. Washington, D.C.: AIAA, Inc., 2012.
8 余雄庆. 飞机总体多学科设计优化的现状与发展方向[J]. 南京航空航天大学学报200840(4): 417-426.
  YU X Q. Multidisciplinary design optimization for aircraft conceptual and preliminary design: Status and directions[J]. Journal of Nanjing University of Aeronautics & Astronautics200840(4): 417-426 (in Chinese).
9 薛小龙. 某型制导火箭弹多学科优化设计研究[D]. 成都:电子科技大学, 2009.
  XUE X L. Research on multidisciplinary optimization design of a certain guided rocket[D]. Chengdu: University of Electronic Science and Technology of China, 2009 (in Chinese).
10 张晓萍. 联接翼飞机气动/结构一体化设计研究[D]. 南京: 南京航空航天大学, 2006.
  ZHANG X P. Research on aerodynamic/structural integration design of connected wing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese).
11 MOHAMMADI B, PIRONNEAU O. Shape optimization in fluid mechanics[J]. Annual Review of Fluid Mechanics200436: 255-279.
12 DARDEN C M. Sonic-boom minimization with nose-bluntness relaxation: L-12464[R]. Hampton: NASA Langley Research Center, 1979.
13 RALLABHANDI S K, MAVRIS D N. Sonic boom minimization using inverse design and probabilistic acoustic propagation?[J]. Journal of Aircraft200643(6): 1815-1828.
14 CHAN M K. Supersonic aircraft optimization for minimizing drag and sonic boom[M]. Palo Alto: Stanford University, 2003
15 FENG X Q, LI Z K, SONG B F. Research of low boom and low drag supersonic aircraft design[J]. Chinese Journal of Aeronautics201427(3): 531-541.
16 CHOI S, ALONSO J J, KROO I M, et al. Multifidelity design optimization of low-boom supersonic jets[J]. Journal of Aircraft200845(1): 106-118.
17 冯晓强, 李占科, 宋笔锋, 等. 基于混合网格的声爆/气动一体化设计方法研究[J]. 空气动力学学报201432(1): 30-37.
  FENG X Q, LI Z K, SONG B F, et al. Optimization of sonicboom and aerodynamic based on structured/unstructured hybrid grid[J]. Acta Aerodynamica Sinica201432(1): 30-37 (in Chinese).
18 王浩, 钟敏, 韩硕, 等. 超声速公务机气动声爆耦合优化设计探索[C]∥ 第六届中国航空科学技术大会论文集. 北京: 中国航空学会, 2023.
  WANG H, ZHONG M, HAN S, et al. Exploration of aerodynamic sonic-boom coupled optimization design of supersonic business jet[C]∥ The 6th China Aeronautical Science and Technology Conference (CASTC 2023). Beijing: Chinese Society of Aeronautics and Astronautics, 2023 (in Chinese).
19 罗骁, 宋超, 陈波, 等. 超声速客机多目标优化与不确定性分析研究[C]∥ 第六届中国航空科学技术大会论文集. 北京: 中国航空学会, 2023.
  LUO X, SONG C, CHEN B, et al. Research on multi-objective optimization and uncertainty analysis of supersonic passenger aircraft[C]∥ Proceedings of the 6th China Aviation Science and Technology Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2023 (in Chinese).
20 张文琦. 低阻低声爆超声速公务机气动布局设计技术研究[C]∥ 第八届中国航空学会青年科技论坛论文集. 北京: 中国航空学会, 2018.
  ZHANG W Q. Research on aerodynamic layout design technology of low resistance low explosion supersonic business aircraft[C]∥ Proceedings of the 8th China Aeronautical Society Youth Science and Technology Forum. Beijing:Chinese Society of Aeronautics and Astronautics, 2018 (in Chinese).
21 NADARAJAH S, JAMESON A, ALONSO J. Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow[C]∥ Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2002.
22 AFTOSMIS M J, NEMEC M, CLIFF S E. Adjoint-based low-boom design with Cart3D[C]∥ 29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011.
23 ORDAZ I, GEISELHART K A, FENBERT J W. Conceptual design of low-boom aircraft with flight trim requirement[J]. Journal of Aircraft201552(3): 932-939.
24 MUNGUíA B C, ECONOMON T D, ALONSO J J. A discrete adjoint framework for low-boom supersonic aircraft shape optimization[C]∥ Proceedings of the 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2017.
25 RALLABHANDI S. Sonic boom adjoint methodology and its applications[C]∥ Proceedings of the 29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011.
26 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报201940(5):122505.
  HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica201940(5): 122505 (in Chinese).
27 刘峰博, 郝海兵, 李典, 等. 兼顾气动和近场声爆特性的伴随优化[J]. 空气动力学学报202341(5): 48-58.
  LIU F B, HAO H B, LI D, et al. Adjoint-based design optimization considering both aerodynamic and near-field sonic boom[J]. Acta Aerodynamica Sinica202341(5): 48-58 (in Chinese).
28 ECONOMON T D, PALACIOS F, COPELAND S R, et al. SU2: An open-source suite for multiphysics simulation and design?[J]. AIAA Journal201654(3): 828-846.
29 JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]∥ Proceedings of the 14th Fluid and Plasma Dynamics Conference. Reston: AIAA, 1981.
30 JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal198725(7): 929-935.
31 WALKDEN F. The shock pattern of a wing-body combination, far from the flight path[J]. Aeronautical Quarterly19589(2): 164-194.
32 THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method: A-4232[R]. Moffett Field: NASA Ames Research Center, 1972.
33 RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Aircraft201148(4): 1245-1253.
34 YAMAMOTO M, HASHIMOTO A, TAKAHASHI T, et al. Numerical simulation for sonic boom propagation through an Inhomogeneous atmosphere with winds[C]∥ AIP Conference Proceedings. New York: AIP, 2012.
35 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报201937(4): 663-674.
  QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica201937(4): 663-674 (in Chinese).
36 钱祖文. 非线性声学[M]. 2版. 北京: 科学出版社, 2009.
  QIAN Z W. Nonlinear acoustics[M]. 2nd ed. Beijing: Science Press, 2009 (in Chinese).
37 崔青, 白俊强, 宋源, 等. 基于增广Burgers方程的超声速客机远场声爆预测研究[J]. 航空工程进展202112(2): 88-97.
  CUI Q, BAI J Q, SONG Y, et al. Research on far-field acoustic explosion prediction of supersonic aircraft based on augmented Burgers equation[J]. Advances in Aeronautical Science and Engineering202112(2): 88-97 (in Chinese).
38 STEVENS S S. Perceived level of noise by mark VII and decibels (E)[J]. The Journal of the Acoustical Society of America197251(2B): 575-601.
39 PARK M A, MORGENSTERN J M. Summary and statistical analysis of the first AIAA sonic boom prediction workshop[J]. Journal of Aircraft201653(2): 578-598.
40 RALLABHANDI S K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft201956(3): 876-895.
41 ANDERSON G R, AFTOSMIS M J, NEMEC M. Cart3D simulations for the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft201956(3): 896-911.
42 KNOWLES J, CORNE D. Properties of an adaptive archiving algorithm for storing nondominated vectors[J]. IEEE Transactions on Evolutionary Computation20037(2): 100-116.
43 BADER J, ZITZLER E. HypE: An algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary Computation201119(1): 45-76.
44 ZHAN D W, CHENG Y S, LIU J. Expected improvement matrix-based infill criteria for expensive multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation201721(6): 956-975.
45 PANG Y, YANG L L, WANG Y T, et al. A Latin hypervolume design for irregular sampling spaces and its application in the analysis of cracks[J]. Engineering with Computers202339(5): 3509-3526.
46 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报201937(4): 620-635.
  HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: A review of recent progress[J]. Acta Aerodynamica Sinica201937(4): 620-635 (in Chinese).
Outlines

/