ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Differential geometric guidance law design based on fixed⁃time convergent error dynamics method
Received date: 2023-10-12
Revised date: 2023-11-20
Accepted date: 2024-01-29
Online published: 2024-02-05
Supported by
National Natural Science Foundation of China(12002370)
A differential geometric guidance law design method with the characteristic of fixed-time convergence is proposed. Firstly, a new control parameter selection mechanism is presented for the recently proposed Fixed-Time convergence Error Dynamics (FxTED) method. The number of control parameters are reduced from four to three, and a more accurate upper-bound of the error settling time is obtained. Secondly, for the guidance law design problem against stationary targets, the FxTED method is extended to the arc-length domain based on the classical differential geometry curve theory, and the differential geometric guidance law design method with the property of fixed-range convergence is proposed. Then, to address the problems of impact-angle-control guidance and flight-range-control guidance, two fixed-range convergence differential geometric guidance laws are designed. Finally, the effectiveness of the proposed method is verified through numerical simulation examples.
Xianzong BAI , Kebo LI , Haojian LI , Wei DONG . Differential geometric guidance law design based on fixed⁃time convergent error dynamics method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(16) : 329712 -329712 . DOI: 10.7527/S1000-6893.2023.29712
1 | TYAN F. Capture region of a 3D PPN guidance law for intercepting high-speed targets[J]. Asian Journal of Control, 2012, 14(5): 1215-1226. |
2 | LI K B, SHIN H S, TSOURDOS A, et al. Capturability of 3D PPN against lower-speed maneuvering target for homing phase[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 711-722. |
3 | LI K B, SHIN H S, TSOURDOS A, et al. Performance of 3-D PPN against arbitrarily maneuvering target for homing phase[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3878-3891. |
4 | SHIN H S, LI K B. An improvement in three-dimensional pure proportional navigation guidance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3004-3014. |
5 | KIM M, GRIDER K V. Terminal guidance for impact attitude angle constrained flight trajectories[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(6): 852-859. |
6 | 李晓宝, 赵国荣, 张友安, 等. 自适应严格收敛非奇异终端滑模制导律[J]. 航空学报, 2019, 40(5): 322569. |
LI X B, ZHAO G R, ZHANG Y A, et al. Adaptive nonsingular terminal sliding mode guidance law with strict convergence[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 322569 (in Chinese). | |
7 | 张宽桥, 杨锁昌, 李宝晨, 等. 考虑驾驶仪动态特性的固定时间收敛制导律[J]. 航空学报, 2019, 40(11): 323227. |
ZHANG K Q, YANG S C, LI B C, et al. Fixed-time convergent guidance law considering autopilot dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 323227 (in Chinese). | |
8 | 黎克波, 廖选平, 梁彦刚, 等. 基于纯比例导引的拦截碰撞角约束制导策略[J]. 航空学报, 2020, 41(S2): 724277. |
LI K B, LIAO X P, LIANG Y G, et al. Guidance strategy with impact angle constraints based on pure proportional navigation [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724277 (in Chinese). | |
9 | TEKIN R, ERER K S, HOLZAPFEL F. Impact time control with generalized-polynomial range formulation[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1190-1195. |
10 | KIM H G, LEE H. Composite guidance for impact time control under physical constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1096-1108. |
11 | LEE J I, JEON I S, TAHK M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 301-310. |
12 | 李斌, 林德福, 何绍溟, 等. 基于最优误差动力学的时间角度控制制导律[J]. 航空学报, 2018, 39(11): 322225. |
LI B, LIN D F, HE S M, et al. Time and angle control guidance law based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 322225 (in Chinese). | |
13 | KIM H G, LEE J Y, KIM H J, et al. Look-angle-shaping guidance law for impact angle and time control with field-of-view constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1602-1612. |
14 | LEE C H, KIM T H, TAHK M J. Interception angle control guidance using proportional navigation with error feedback[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(5): 1556-1561. |
15 | JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260-266. |
16 | RYOO C K, CHO H J, TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3): 483-492. |
17 | WANG C Y, DONG W, WANG J N, et al. Nonlinear suboptimal guidance law with impact angle constraint: An SDRE-based approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4831-4840. |
18 | ZHANG Y, TANG S J, GUO J. An adaptive fast fixed-time guidance law with an impact angle constraint for intercepting maneuvering targets[J]. Chinese Journal of Aeronautics, 2018, 31(6): 1327-1344. |
19 | KIM H G, CHO D S, KIM H J. Sliding mode guidance law for impact time control without explicit time-to-go estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 236-250. |
20 | LI X, YE J K, ZHOU C J, et al. Prescribed performance guidance law with multiple constraints[J]. International Journal of Aerospace Engineering, 2022, 2022: 5191568. |
21 | ZHOU D, SUN S, TEO K L. Guidance laws with finite time convergence[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6): 1838-1846. |
22 | BHAT S P, BERNSTEIN D S. Lyapunov analysis of finite-time differential equations[C]∥ Proceedings of 1995 American Control Conference. Piscataway: IEEE Press, 1995: 1831-1832. |
23 | SHEN Y J, XIA X H. Semi-global finite-time observers for nonlinear systems[J]. Automatica, 2008, 44(12): 3152-3156. |
24 | SHEN Y J, HUANG Y H. Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers[J]. IEEE Transactions on Automatic Control, 2009, 54(11): 2621-2625. |
25 | SUN Z Y, YUN M M, LI T. A new approach to fast global finite-time stabilization of high-order nonlinear system[J]. Automatica, 2017, 81: 455-463. |
26 | ZHOU J L, YANG J Y. Guidance law design for impact time attack against moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2580-2589. |
27 | ZHANG X J, LIU M Y, LI Y, et al. Impact angle control over composite guidance law based on feedback linearization and finite time control[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 1036-1045. |
28 | HU Q L, HAN T, XIN M. Sliding-mode impact time guidance law design for various target motions[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(1): 136-148. |
29 | ZANG L Y, LIN D F, JI Y. Nonsingular continuous finite-time convergent guidance law with impact angle constraints[J]. International Journal of Aerospace Engineering, 2019, 2019: 6024240. |
30 | HE S M, LEE C H. Optimality of error dynamics in missile guidance problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(7): 1624-1633. |
31 | POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110. |
32 | PARSEGOV S, POLYAKOV A, SHCHERBAKOV P. Nonlinear fixed-time control protocol for uniform allocation of agents on a segment[C]∥ 2012 IEEE 51st IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2012: 7732-7737. |
33 | ZUO Z Y, TIAN B L, DEFOORT M, et al. Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics[J]. IEEE Transactions on Automatic Control, 2018, 63(2): 563-570. |
34 | ZUO Z Y, HAN Q L, NING B D. Fixed-time cooperative control of multi-agent systems[M]. Cham: Springer International Publishing, 2019. |
35 | WANG C Y, DONG W, WANG J N, et al. Guidance law design with fixed-time convergent error dynamics[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(7): 1389-1398. |
36 | DONG W, WANG C Y, WANG J N, et al. Three-dimensional nonsingular cooperative guidance law with different field-of-view constraints[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(11): 2001-2015. |
37 | DONG W, WANG C Y, WANG J N, et al. Fixed-time terminal angle-constrained cooperative guidance law against maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1352-1366. |
38 | DONG W, WANG C Y, LIU J H, et al. Three-dimensional vector guidance law with impact time and angle constraints[J]. Journal of the Franklin Institute, 2023, 360(2): 693-718. |
39 | WANG C Y, DONG W, WANG J N, et al. Impact-angle-constrained cooperative guidance for salvo attack[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(4): 684-703. |
40 | LU P. Intercept of nonmoving targets at arbitrary time-varying velocity[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(1): 176-178. |
41 | LI K B, LIU Y H, LIANG Y G, et al. Performance of PPN guided missile with arbitrary time-varying speed against stationary targets: New findings[C]∥ 2022 5th International Symposium on Autonomous Systems. Piscataway: IEEE Press, 2022: 1-8. |
42 | 刘远贺, 黎克波, 何绍溟, 等. 基于最优误差动力学的变速导弹飞行路程控制制导律[J]. 航空学报, 2023, 44(7): 326909. |
LIU Y H, LI K B, HE S M, et al. Flying range control guidance for varying-speed missiles based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 326909 (in Chinese). | |
43 | 周文平, 刘奕帆, 宋铁磊. 由留数定理求解的两类无穷积分[J]. 物理与工程, 2022, 32(1): 56-59. |
ZHOU W P, LIU Y F, SONG T L. Two types of infinite integrals handled by residue theorem[J]. Physics and Engineering, 2022, 32(1): 56-59 (in Chinese). | |
44 | LEE C H, KIM T H, TAHK M J. Effects of time-to-go errors on performance of optimal guidance laws[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3270-3281. |
/
〈 |
|
〉 |