Electronics and Electrical Engineering and Control

Differential geometric guidance law design based on fixed⁃time convergent error dynamics method

  • Xianzong BAI ,
  • Kebo LI ,
  • Haojian LI ,
  • Wei DONG
Expand
  • 1.National Innovation Institute of Defense Technology,Academy of Military Science,Beijing 100010,China
    2.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    3.Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions,Changsha 410073,China
    4.National Key Laboratory of Autonomous Intelligent Unmanned Systems,Beijing Institute of Technology,Beijing 100081,China

Received date: 2023-10-12

  Revised date: 2023-11-20

  Accepted date: 2024-01-29

  Online published: 2024-02-05

Supported by

National Natural Science Foundation of China(12002370)

Abstract

A differential geometric guidance law design method with the characteristic of fixed-time convergence is proposed. Firstly, a new control parameter selection mechanism is presented for the recently proposed Fixed-Time convergence Error Dynamics (FxTED) method. The number of control parameters are reduced from four to three, and a more accurate upper-bound of the error settling time is obtained. Secondly, for the guidance law design problem against stationary targets, the FxTED method is extended to the arc-length domain based on the classical differential geometry curve theory, and the differential geometric guidance law design method with the property of fixed-range convergence is proposed. Then, to address the problems of impact-angle-control guidance and flight-range-control guidance, two fixed-range convergence differential geometric guidance laws are designed. Finally, the effectiveness of the proposed method is verified through numerical simulation examples.

Cite this article

Xianzong BAI , Kebo LI , Haojian LI , Wei DONG . Differential geometric guidance law design based on fixed⁃time convergent error dynamics method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(16) : 329712 -329712 . DOI: 10.7527/S1000-6893.2023.29712

References

1 TYAN F. Capture region of a 3D PPN guidance law for intercepting high-speed targets[J]. Asian Journal of Control201214(5): 1215-1226.
2 LI K B, SHIN H S, TSOURDOS A, et al. Capturability of 3D PPN against lower-speed maneuvering target for homing phase[J]. IEEE Transactions on Aerospace and Electronic Systems202056(1): 711-722.
3 LI K B, SHIN H S, TSOURDOS A, et al. Performance of 3-D PPN against arbitrarily maneuvering target for homing phase[J]. IEEE Transactions on Aerospace and Electronic Systems202056(5): 3878-3891.
4 SHIN H S, LI K B. An improvement in three-dimensional pure proportional navigation guidance[J]. IEEE Transactions on Aerospace and Electronic Systems202157(5): 3004-3014.
5 KIM M, GRIDER K V. Terminal guidance for impact attitude angle constrained flight trajectories[J]. IEEE Transactions on Aerospace and Electronic Systems1973, AES-9(6): 852-859.
6 李晓宝, 赵国荣, 张友安, 等. 自适应严格收敛非奇异终端滑模制导律[J]. 航空学报201940(5): 322569.
  LI X B, ZHAO G R, ZHANG Y A, et al. Adaptive nonsingular terminal sliding mode guidance law with strict convergence[J]. Acta Aeronautica et Astronautica Sinica201940(5): 322569 (in Chinese).
7 张宽桥, 杨锁昌, 李宝晨, 等. 考虑驾驶仪动态特性的固定时间收敛制导律[J]. 航空学报201940(11): 323227.
  ZHANG K Q, YANG S C, LI B C, et al. Fixed-time convergent guidance law considering autopilot dynamics[J]. Acta Aeronautica et Astronautica Sinica201940(11): 323227 (in Chinese).
8 黎克波, 廖选平, 梁彦刚, 等. 基于纯比例导引的拦截碰撞角约束制导策略[J]. 航空学报202041(S2): 724277.
  LI K B, LIAO X P, LIANG Y G, et al. Guidance strategy with impact angle constraints based on pure proportional navigation [J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724277 (in Chinese).
9 TEKIN R, ERER K S, HOLZAPFEL F. Impact time control with generalized-polynomial range formulation[J]. Journal of Guidance, Control, and Dynamics201841(5): 1190-1195.
10 KIM H G, LEE H. Composite guidance for impact time control under physical constraints[J]. IEEE Transactions on Aerospace and Electronic Systems202258(2): 1096-1108.
11 LEE J I, JEON I S, TAHK M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems200743(1): 301-310.
12 李斌, 林德福, 何绍溟, 等. 基于最优误差动力学的时间角度控制制导律[J]. 航空学报201839(11): 322225.
  LI B, LIN D F, HE S M, et al. Time and angle control guidance law based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica201839(11): 322225 (in Chinese).
13 KIM H G, LEE J Y, KIM H J, et al. Look-angle-shaping guidance law for impact angle and time control with field-of-view constraint[J]. IEEE Transactions on Aerospace and Electronic Systems202056(2): 1602-1612.
14 LEE C H, KIM T H, TAHK M J. Interception angle control guidance using proportional navigation with error feedback[J]. Journal of Guidance, Control, and Dynamics201336(5): 1556-1561.
15 JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology200614(2): 260-266.
16 RYOO C K, CHO H J, TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology200614(3): 483-492.
17 WANG C Y, DONG W, WANG J N, et al. Nonlinear suboptimal guidance law with impact angle constraint: An SDRE-based approach[J]. IEEE Transactions on Aerospace and Electronic Systems202056(6): 4831-4840.
18 ZHANG Y, TANG S J, GUO J. An adaptive fast fixed-time guidance law with an impact angle constraint for intercepting maneuvering targets[J]. Chinese Journal of Aeronautics201831(6): 1327-1344.
19 KIM H G, CHO D S, KIM H J. Sliding mode guidance law for impact time control without explicit time-to-go estimation[J]. IEEE Transactions on Aerospace and Electronic Systems201955(1): 236-250.
20 LI X, YE J K, ZHOU C J, et al. Prescribed performance guidance law with multiple constraints[J]. International Journal of Aerospace Engineering20222022: 5191568.
21 ZHOU D, SUN S, TEO K L. Guidance laws with finite time convergence[J]. Journal of Guidance, Control, and Dynamics200932(6): 1838-1846.
22 BHAT S P, BERNSTEIN D S. Lyapunov analysis of finite-time differential equations[C]∥ Proceedings of 1995 American Control Conference. Piscataway: IEEE Press, 1995: 1831-1832.
23 SHEN Y J, XIA X H. Semi-global finite-time observers for nonlinear systems[J]. Automatica200844(12): 3152-3156.
24 SHEN Y J, HUANG Y H. Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers[J]. IEEE Transactions on Automatic Control200954(11): 2621-2625.
25 SUN Z Y, YUN M M, LI T. A new approach to fast global finite-time stabilization of high-order nonlinear system[J]. Automatica201781: 455-463.
26 ZHOU J L, YANG J Y. Guidance law design for impact time attack against moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems201854(5): 2580-2589.
27 ZHANG X J, LIU M Y, LI Y, et al. Impact angle control over composite guidance law based on feedback linearization and finite time control[J]. Journal of Systems Engineering and Electronics201829(5): 1036-1045.
28 HU Q L, HAN T, XIN M. Sliding-mode impact time guidance law design for various target motions[J]. Journal of Guidance, Control, and Dynamics201842(1): 136-148.
29 ZANG L Y, LIN D F, JI Y. Nonsingular continuous finite-time convergent guidance law with impact angle constraints[J]. International Journal of Aerospace Engineering20192019: 6024240.
30 HE S M, LEE C H. Optimality of error dynamics in missile guidance problems[J]. Journal of Guidance, Control, and Dynamics201841(7): 1624-1633.
31 POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control201257(8): 2106-2110.
32 PARSEGOV S, POLYAKOV A, SHCHERBAKOV P. Nonlinear fixed-time control protocol for uniform allocation of agents on a segment[C]∥ 2012 IEEE 51st IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2012: 7732-7737.
33 ZUO Z Y, TIAN B L, DEFOORT M, et al. Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics[J]. IEEE Transactions on Automatic Control201863(2): 563-570.
34 ZUO Z Y, HAN Q L, NING B D. Fixed-time cooperative control of multi-agent systems[M]. Cham: Springer International Publishing, 2019.
35 WANG C Y, DONG W, WANG J N, et al. Guidance law design with fixed-time convergent error dynamics[J]. Journal of Guidance, Control, and Dynamics202144(7): 1389-1398.
36 DONG W, WANG C Y, WANG J N, et al. Three-dimensional nonsingular cooperative guidance law with different field-of-view constraints[J]. Journal of Guidance, Control, and Dynamics202144(11): 2001-2015.
37 DONG W, WANG C Y, WANG J N, et al. Fixed-time terminal angle-constrained cooperative guidance law against maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems202258(2): 1352-1366.
38 DONG W, WANG C Y, LIU J H, et al. Three-dimensional vector guidance law with impact time and angle constraints[J]. Journal of the Franklin Institute2023360(2): 693-718.
39 WANG C Y, DONG W, WANG J N, et al. Impact-angle-constrained cooperative guidance for salvo attack[J]. Journal of Guidance, Control, and Dynamics202245(4): 684-703.
40 LU P. Intercept of nonmoving targets at arbitrary time-varying velocity[J]. Journal of Guidance, Control, and Dynamics199821(1): 176-178.
41 LI K B, LIU Y H, LIANG Y G, et al. Performance of PPN guided missile with arbitrary time-varying speed against stationary targets: New findings[C]∥ 2022 5th International Symposium on Autonomous Systems. Piscataway: IEEE Press, 2022: 1-8.
42 刘远贺, 黎克波, 何绍溟, 等. 基于最优误差动力学的变速导弹飞行路程控制制导律[J]. 航空学报202344(7): 326909.
  LIU Y H, LI K B, HE S M, et al. Flying range control guidance for varying-speed missiles based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica202344(7): 326909 (in Chinese).
43 周文平, 刘奕帆, 宋铁磊. 由留数定理求解的两类无穷积分[J]. 物理与工程202232(1): 56-59.
  ZHOU W P, LIU Y F, SONG T L. Two types of infinite integrals handled by residue theorem[J]. Physics and Engineering202232(1): 56-59 (in Chinese).
44 LEE C H, KIM T H, TAHK M J. Effects of time-to-go errors on performance of optimal guidance laws[J]. IEEE Transactions on Aerospace and Electronic Systems201551(4): 3270-3281.
Outlines

/