Special Topic: Deep Space Optoelectronic Measurement and Intelligent Awareness Technology

Long-wave infrared polarization imaging based on liquid crystal polarization grating

  • Zidi ZHONG ,
  • Qi GUO ,
  • Zhijun TU ,
  • Huijie ZHAO ,
  • Senbo WANG
Expand
  • 1.School of Instrumentation and Opto-Electronic Engineering,Beihang University,Beijing 100191,China
    2.Space Optoelectronic Measurement and Perception Lab. ,Beijing Institute of Control Engineering,Beijing 100190,China
    3.Key Laboratory of Precision Opto-Mechatronics Technology,Ministry of Industry and Information Technology,Beijing 100191,China
    4.Institute of Artificial Intelligence,Beihang University,Beijing 100191,China
    5.Beihang University Qingdao Research Institute,Beihang University,Qingdao 266101,China
E-mail: tuzch76@sina.com

Received date: 2024-04-14

  Revised date: 2024-05-18

  Accepted date: 2024-07-01

  Online published: 2024-07-12

Supported by

Optoelectronic Measurement and Intelligent Perception Zhongguancun Open Laboratory, and Space Optoelectronic Measurement and Perception Laboratory, Beijing Institute of Control Engineering(LabSOMP-2022-1)

Abstract

A long-wave infrared polarization imaging method proposed using liquid crystal polarization grating as a novel beam splitting element. The fabrication of liquid crystal polarization grating was achieved, and the method proposed was experimentally verified. The relationship between the effective imaging angle of view and the grating period used in the polarization imaging optical path based on liquid crystal polarization grating was analyzed, and the optimal grating period corresponding to the maximum angle of view with the experimental optical path parameters was calculated. The transformation of polarization states in the optical path was derived using the Mueller matrix, and a time-division polarization imaging method whose parameters were optimized by minimizing error transfer was designed based on the polarization state transformation matrix. A liquid crystal wave-plate was fabricated, with which the birefringence in 8.6–12 μm band and the transmittance in 7.5–12 μm band of liquid crystal materials were measured. A liquid crystal polarization grating was manufactured according to the optimal grating period and grating parameters based on the measured liquid crystal material characteristics. Diffraction efficiency of the long-wave infrared liquid crystal polarization grating in 8.6–12 μm band was measured, reaching a diffraction efficiency of more than 90% at around 10 μm wavelength. An experimental polarization imaging system was constructed with the prepared long-wave liquid crystal polarization grating and wave-plate to accomplish polarization imaging and imaging processing that calculate the polarization states. Comparisons between preset values and measured values show that a measurement error of less than 1° was achieved.

Cite this article

Zidi ZHONG , Qi GUO , Zhijun TU , Huijie ZHAO , Senbo WANG . Long-wave infrared polarization imaging based on liquid crystal polarization grating[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(3) : 630523 -630523 . DOI: 10.7527/S1000-6893.2024.30523

References

1 范颖, 何晓峰, 范晨, 等. 多云天气条件下的大气偏振光定向方法[J]. 航空学报202041(9): 324263.
  FAN Y, HE X F, FAN C, et al. Atmospheric polarized light orientation method in cloudy weather[J]. Acta Aeronautica et Astronautica Sinica202041(9): 324263 (in Chinese).
2 蒋睿, 王霞, 左一凡, 等. 基于局部大气偏振特性的仿生导航方法[J]. 航空学报202041(S2): 724293.
  JIANG R, WANG X, ZUO Y F, et al. Bionic navigation based on local atmospheric polarization [J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724293 (in Chinese).
3 王爽. 类地行星与小行星偏振特性研究[D]. 云南: 中国科学院大学(中国科学院云南天文台), 2019: 5-56.
  WANG S. Polarmetric study of Earth-like exoplanets and asteroids[D]. Kunming: University of Chinese Academy of Sciences (Yunnan Observatories, Chinese Academy of Sciences), 2019: 5-56 (in Chinese).
4 杨之文, 高胜钢, 王培纲. 几种地物反射光的偏振特性[J]. 光学学报200525(2): 241-245.
  YANG Z W, GAO S G, WANG P G. Polarization of reflected light by earth objects[J]. Acta Optica Sinica200525(2): 241-245 (in Chinese).
5 孙晓兵, 乔延利, 洪津, 等. 人工目标偏振特征实验研究[J]. 高技术通讯200313(8): 23-27.
  SUN X B, QIAO Y L, H J, et al. Experimental study on polarization characteristic of man-made object[J]. Chinese High Technology Letters200313(8): 23-27. (in Chinese).
6 王新. 主动式激光成像偏振特性探测实验研究[D]. 烟台: 烟台大学, 2007: 1-3.
  WANG X. Experimental research on active laser imaging detection of polarization characteristics[D]. Yantai: Yantai University, 2007: 1-3 (in Chinese).
7 TYO J S, GOLDSTEIN D L, CHENAULT D B, et al. Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics200645(22): 5453-5469.
8 牛国成, 胡冬梅, 吴勇. Stokes偏振成像技术的研究[M]. 北京: 科学出版社, 2020: 45-60.
  NIU G C, HU D M, WU Y. Research on Stokes polarization imaging technology[M]. Beijing: Science Press, 2020: 45-60 (in Chinese).
9 FORSSELL G. Surface landmine and trip-wire detection using calibrated polarization measurements in the LWIR and SWIR[C]∥Proceedings Volume 4491, Subsurface and Surface Sensing Technologies and Applications III. Bellingham: SPIE, 2001: 41-51.
10 FORSSELL G, HEDBORG-KARLSSON E. Measurements of polarization properties of camouflaged objects and of the denial of surfaces covered with cenospheres[C]∥Proceedings Volume 5075, Targets and Backgrounds IX: Characterization and Representation. Bellingham: SPIE, 2003: 246-258.
11 GURTON K P, YUFFA A J, VIDEEN G W. Enhanced facial recognition for thermal imagery using polarimetric imaging[J]. Optics Letters201439(13): 3857-3859.
12 YUFFA A J, GURTON K P, VIDEEN G. Three-dimensional facial recognition using passive long-wavelength infrared polarimetric imaging[J]. Applied Optics201453(36): 8514-8521.
13 汪震, 乔延利, 洪津, 等. 金属板热红外偏振的方向特性研究[J]. 光电工程200734(6): 49-52.
  WANG Z, QIAO Y L, HONG J, et al. Thermal emission polarization of metal plate at different viewing angles[J]. Opto-Electronic Engineering200734(6): 49-52 (in Chinese).
14 汪震, 洪津, 叶松, 等. 金属表面粗糙度对热红外偏振特性影响研究[J]. 光子学报200736(8): 1500-1503.
  WANG Z, HONG J, YE S, et al. Study on effect of metal surface roughness on polarized thermal emission[J]. Acta Photonica Sinica200736(8): 1500-1503 (in Chinese).
15 汪震. 金属表面热红外偏振特性的模型研究[J]. 光学学报200929(3): 707-711.
  WANG Z. Model of polarized thermal emission from rough metal surface[J]. Acta Optica Sinica200929(3): 707-711 (in Chinese).
16 王霞, 梁建安, 龙华宝, 等. 典型背景和目标的长波红外偏振成像实验研究[J]. 红外与激光工程201645(7): 0704002.
  WANG X, LIANG J A, LONG H B, et al. Experimental study on long wave infrared polarization imaging of typical background and objectives[J]. Infrared and Laser Engineering201645(7): 0704002 (in Chinese).
17 SHI H D, LIU Y, HE C F, et al. Analysis of infrared polarization properties of targets with rough surfaces[J]. Optics Laser Technology2022151: 108069.
18 SUN H Y, SUI G Z, GU X S, et al. An unmanned aerial vehicle (UAV)-borne dual-band polarization imaging system for evidence search[J]. Optics & Laser Technology2024169: 109986.
19 SUN H Y, MA L J, FU Q, et al. Long-wave infrared polarization-based airborne marine oil spill detection and identification technology[J]. Photonics202310(5): 588.
20 PROVENZANO C, PAGLIUSI P, CIPPARRONE G. Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces[J]. Applied Physics Letters200689(12):121105.
21 GORI F. Measuring Stokes parameters by means of a polarization grating[J]. Optics Letters199924(9): 584-586.
22 KIM J, ESCUTI M J. Snapshot imaging spectropolarimeter utilizing polarization gratings[C]∥Proceedings Volume 7086, Imaging Spectrometry XIII. Bellingham: SPIE, 2008: 708603.
23 NODA K, MOMOSAKI R, MATSUBARA J, et al. Polarization imaging using an anisotropic diffraction grating and liquid crystal retarders[J]. Applied Optics201857(30): 8870-8875.
24 XUAN Y, GUO Q, ZHAO H J, et al. Full stokes polarization imaging based on broadband liquid crystal polarization gratings[J]. Crystals202313(1): 38.
25 陈琎. 高效率、 宽谱段液晶偏振光栅的设计与实现[D]. 长春: 中国科学院大学, 2021: 20-22.
  CHEN J. Design and realization of high-efficiency, wide-spectrum liquid crystal polarization grating[D]. Changchun: University of Chinese Academy of Sciences, 2021: 20-22 (in Chinese).
26 XU D, GUO Q, LIU T, et al. An exposure method of liquid crystal polarization grating for VR/AR optical systems[J]. SID Symposium Digest of Technical Papers202152(S2): 728-731.
27 王小玉. 图像去噪复原方法研究[M]. 北京: 电子工业出版社, 2017: 51-54.
  WANG X Y. Research on image denoising and restoration[M]. Beijing: Publishing House of Electronics Industry, 2017: 51-54 (in Chinese).
Outlines

/