ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Influence of geometric variation on aerodynamic performance of controlled diffusion airfoil
Received date: 2024-04-22
Revised date: 2024-05-13
Accepted date: 2024-06-17
Online published: 2024-07-01
Supported by
National Level Project
This paper conducts research on the law and mechanism of influence of local geometric variations on airfoil performance. The Hicks-Henne function is used to model the contour variation and contour gradient variation of Controlled Diffusion Airfoil (CDA) to perform S1 stream surface numerical calculation. The calculation results indicate that the trend of variation of blade performance with positive and negative airfoil contour variation amplitude is symmetrical, when airfoil contour gradient variation is small. However, when airfoil contour gradient variation is large, both positive and negative airfoil contour variations lead to a decrease in airfoil performance, and influence of positive variations surpasses that of negative variations. Boundary layer separation and even transition in advance caused by geometric variations is the major reason for the decrease in airfoil performance. Based on the research results, the sensitive regions for CDA are established, which are within 5% chord from the leading edge and the suction surface before boundary layer transition. The variation sensitive regions are conducive to improving processing tolerance criteria and reducing the aerodynamic performance risk of compressors.
Dejun MENG , Wenbin SHI , Jiaxin LIU , Pengfei XU , Dingxi WANG , Xianjun YU . Influence of geometric variation on aerodynamic performance of controlled diffusion airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(19) : 630565 -630565 . DOI: 10.7527/S1000-6893.2024.30565
1 | 刘维伟, 李杰光, 赵明, 等. 航空发动机薄壁叶片加工变形误差补偿技术研究[J]. 机械设计与制造, 2009(10): 175-177. |
LIU W W, LI J G, ZHAO M, et al. Research on the compensation of deformation error in NC machining of thin-walled blades[J]. Machinery Design & Manufacture, 2009(10): 175-177 (in Chinese). | |
2 | 蔡景, 李鑫, 肖罗椿, 等. 竞争风险模型下变环境的发动机叶片可靠性分析[J]. 航空动力学报, 2017, 32(2): 398-404. |
CAI J, LI X, XIAO L C, et al. Reliability analysis of engine blade under varied environment with competing risk model[J]. Journal of Aerospace Power, 2017, 32(2): 398-404 (in Chinese). | |
3 | BALAN C, TABAKOFF W. Axial flow compressor performance deterioration[C]?∥ 20th Joint Propulsion Conference. Reston: AIAA, 1984. |
4 | ROBERTS W B. Axial compressor performance restoration by blade profile control[C]∥ Proceedings of ASME 1984 International Gas Turbine Conference and Exhibit.New York: ASME, 1984. |
5 | HUYSE L. Solving problems of optimization under uncertainty as statistical decision problems[C]?∥ 19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001. |
6 | LI W, HUYSE L, PADULA S. Robust airfoil optimization to achieve drag reduction over a range of Mach numbers[J]. Structural and Multidisciplinary Optimization, 2002, 24(1): 38-50. |
7 | CUMPSTY N A. Compressor aerodynamics[M]. London:Longman Scientific and Technical, 2004. |
8 | SUDER K L, CHIMA R V, STRAZISAR A J, et al. The effect of adding roughness and thickness to a transonic axial compressor rotor[C]∥ Proceedings of ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. New York: ASME, 1995. |
9 | GOODHAND M N, MILLER R J, LUNG H W. The sensitivity of 2D compressor incidence range to In-service geometric variation[C]∥ Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2013: 159-170. |
10 | GOODHAND M N, MILLER R J, LUNG H W. The impact of geometric variation on compressor two-dimensional incidence range[J]. Journal of Turbomachinery, 2015, 137(2): 021007. |
11 | GARZON V E, DARMOFAL D L. Using computational fluid dynamics in probabilistic engineering design[C]∥ 15th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2001. |
12 | GARZON V E. Probabilistic aerothermal design of compressor airfoils[D]. Cambridge: Massachusetts Institute of Technology, 2003. |
13 | GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[J]. Journal of Turbomachinery, 2003, 125(4): 692-703. |
14 | DOW E A, WANG Q. Simultaneous robust design and tolerancing of compressor blades[C]∥ Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014. |
15 | 张伟昊, 邹正平, 李维, 等. 叶型偏差对涡轮性能影响的非定常数值模拟研究[J]. 航空学报, 2010, 31(11): 2130-2138. |
ZHANG W H, ZOU Z P, LI W, et al. Unsteady numerical simulation investigation of effect of blade profile deviation on turbine performance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2130-2138 (in Chinese). | |
16 | 张伟昊, 邹正平, 刘火星, 等. 叶型偏差对整机环境中涡轮性能的影响[J]. 工程热物理学报, 2010, 31(11): 1830-1834. |
ZHANG W H, ZOU Z P, LIU H X, et al. Effect of profile deviation on turbine performance in whole engine environment[J]. Journal of Engineering Thermophysics, 2010, 31(11): 1830-1834 (in Chinese). | |
17 | 高丽敏, 蔡宇桐, 曾瑞慧, 等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术, 2017, 38(3): 525-531. |
GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology, 2017, 38(3): 525-531 (in Chinese). | |
18 | 高丽敏, 杨光, 王浩浩, 等. 波纹对高亚音叶型气动敏感位置和宽度研究[J]. 工程热物理学报, 2023, 44(1): 78-85. |
GAO L M, YANG G, WANG H H, et al. Research on the aerodynamic sensitive position and width of waviness on the high subsonic profile[J]. Journal of Engineering Thermophysics, 2023, 44(1): 78-85 (in Chinese). | |
19 | 高丽敏, 杨光, 王浩浩,等. 波纹对高负荷压气机叶型的影响[J]. 西安交通大学学报, 2023, 57(3):117-128. |
GAO L M, YANG G, WANG H H, et al. Effect of waviness deviation on the blade profile of the high-load compressor[J]. Journal of Xi’an Jiaotong University, 2023, 57(3):117-128 (in Chinese) . | |
20 | 高丽敏, 王浩浩, 杨光,等. 关于前缘加工缺陷及气动合格性的探讨[J]. 推进技术, 2023, 44(1):22010031. |
GAO L M, WANG H H, YANG G, et al. Discussion on machining defects of blade leading edge and aerodynamic qualification[J]. Journal of Propulsion Technology, 2023, 44(1): 22010031 (in Chinese). | |
21 | 于贤君, 庞健, 刘宝杰. 低速模拟在叶型加工偏差影响研究的应用[J]. 工程热物理学报, 2018, 39(7): 1436-1446. |
YU X J, PANG J, LIU B J. The application of low-speed simulation in researching the impact of blades manufacturing deviation on aerodynamic performance[J]. Journal of Engineering Thermophysics, 2018, 39(7): 1436-1446 (in Chinese). | |
22 | 于贤君, 李明志, 安广丰, 等. 高压压气机出口级叶型加工偏差影响的相关性分析[J]. 工程热物理学报, 2022, 43(4): 929-938. |
YU X J, LI M Z, AN G F, et al. Correlation analysis on the influence of manufacture deviation for the compressor blade airfoils of a high-pressure compressor outlet stage[J]. Journal of Engineering Thermophysics, 2022, 43(4): 929-938 (in Chinese). | |
23 | 刘佳鑫, 于贤君, 孟德君, 等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报, 2021, 42(2): 342-358. |
LIU J X, YU X J, MENG D J, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 342-358 (in Chinese). | |
24 | 中国航空工业总公司. 叶片叶型的标注、公差与叶身表面粗糙度: [S]. 北京: 中国航空工业总公司, 1999. |
Aviation Industry Corporation of China. Blade labeling,tolerance and surface roughness: [S]. Beijing: Aviation Industry Corporation of China, 1999 (in Chinese). | |
25 | HICKS R M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7): 407-412. |
26 | DRELA M, YOUNGREN H. A user’s guide to mises 2.53[M]. Cambridge: MIT Fluid Dynamics Research Laboratory, 1998. |
27 | GOODHAND M N, MILLER R J. Compressor leading edge spikes: A new performance criterion[C]∥ Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. New York: ASME, 2010: 1553-1562. |
28 | 刘宝杰, 徐晓斌, 于贤君, 等. CDA叶型前缘流动的实验和数值研究[J]. 工程热物理学报, 2019, 40(8): 1767-1774. |
LIU B J, XU X B, YU X J, et al. Experimental and numerical investigation on the flow near the leading-edge of controlled diffusion airfoil[J]. Journal of Engineering Thermophysics, 2019, 40(8): 1767-1774 (in Chinese). | |
29 | CARTER A D S. Blade profiles for axial-flow fans, pumps, compressors, etc[J]. Proceedings of the Institution of Mechanical Engineers, 1961, 175(1): 775-806. |
/
〈 |
|
〉 |