Solid Mechanics and Vehicle Conceptual Design

Analytical method for vibration analysis of multi-cracked Timoshenko beam structures with elastic foundations

  • Ke WU ,
  • Qibo PENG ,
  • Xinfeng WU ,
  • Pengbo LIU ,
  • Yajun KOU
Expand
  • 1.China Astronauts Research and Training Center,Beijing  100094,China
    2.China Manned Space Agency,Beijing  100071,China
    3.HTYS Information Technology Co. ,Ltd. Shanghai Branch,Shanghai  201107,China
E-mail: poochie003@163.com

Received date: 2024-02-02

  Revised date: 2024-03-28

  Accepted date: 2024-05-30

  Online published: 2024-06-14

Abstract

This study proposes a novel analytical method for vibration analysis of arbitrary multi-crack Timoshenko damping beam structures with elastic foundations based on the Distributed Transfer Function Method (DTFM). A two-parameter continuous spring model considering shear and rotational deformation is adopted for the elastic foundation. For local cracks on the beam structure, a local additional compliance matrix induced by the crack is employed, and the governing equation of the multi-cracked Timoshenko damping beam with an elastic foundation established. Using the augmented distributed transfer function method, we establish the local boundary matrices of the non-cracked and cracked beam components, respectively, and then obtain the global boundary equation in the global coordinate system. Finally, a closed-form analytical solution is derived in integral form, and the natural frequencies, mode shapes, and frequency responses of the cracked beam structures can be derived. In numerical examples, the results from previous papers and the Finite Element Method (FEM) are employed to validate the correctness of the proposed method, and the effect of the cracks and the elastic foundations on dynamic behaviors investigated. With higher computational accuracy and efficiency than the FEM for mid-to-high frequency dynamic responses, the proposed method can be used for crack detection of elastic foundation beams.

Cite this article

Ke WU , Qibo PENG , Xinfeng WU , Pengbo LIU , Yajun KOU . Analytical method for vibration analysis of multi-cracked Timoshenko beam structures with elastic foundations[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(22) : 230280 -230280 . DOI: 10.7527/S1000-6893.2024.30280

References

1 WINKLER E. Die Lehre von der Elasticitaet und Festigkeit: Mit besonderer Rücksicht auf ihre Anwendung in der Technik, für polytechnische schulen, bauakademien, ingenieure, maschinenbauer, architecten, etc[M]. Dominicus1867 (in German).
2 BHATTIPROLU U, BAJAJ A K, DAVIES P. An efficient solution methodology to study the response of a beam on viscoelastic and nonlinear unilateral foundation: Static response[J]. International Journal of Solids and Structures201350(14-15): 2328-2339.
3 EISENBERGER M, YANKELEVSKY D Z, ADIN M A. Vibrations of beams fully or partially supported on elastic foundations[J]. Earthquake Engineering & Structural Dynamics198513(5): 651-660.
4 MARZANI A, MAZZOTTI M, VIOLA E, et al. FEM formulation for dynamic instability of fluid-conveying pipe on nonuniform elastic foundation[J]. Mechanics Based Design of Structures and Machines201240(1): 83-95.
5 ONISZCZUK Z. Free transverse vibrations of elastically connected simply supported double-beam complex system[J]. Journal of Sound and Vibration2000232(2): 387-403.
6 YOKOYAMA T. Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations[J]. Computers & Structures199661(6): 995-1007.
7 FENG Z H, COOK R D. Beam elements on two-parameter elastic foundations[J]. Journal of Engineering Mechanics1983109(6): 1390-1402.
8 MATSUNAGA H. Vibration and buckling of deep beam-columns on two-parameter elastic foundations[J]. Journal of Sound and Vibration1999228(2): 359-376.
9 CHEN C N. Dqem vibration analyses of non-prismatic shear deformable beams resting on elastic foundations[J]. Journal of Sound and Vibration2002255(5): 989-999.
10 MALEKZADEH P, KARAMI G. A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations[J]. Applied Mathematical Modelling200832(7): 1381-1394.
11 MA X, BUTTERWORTH J W, CLIFTON G C. Static analysis of an infinite beam resting on a tensionless Pasternak foundation[J]. European Journal of Mechanics- A200928(4): 697-703.
12 PAPADOPOULOS C A, DIMAROGONAS A D. Coupled longitudinal and bending vibrations of a rotating shaft with an open crack[J]. Journal of Sound and Vibration1987117(1): 81-93.
13 KHIEM N T, TOAN L K. A novel method for crack detection in beam-like structures by measurements of natural frequencies[J]. Journal of Sound and Vibration2014333(18): 4084-4103.
14 LIU J, ZHU W D, CHARALAMBIDES P G, et al. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips[J]. Journal of Sound and Vibration2016382: 274-290.
15 HAN H S, LIU L, CAO D Q. Analytical approach to coupled bending-torsional vibrations of cracked Timoshenko beam?[J]. International Journal of Mechanical Sciences2020166: 105235.
16 ZHAO X, HU Q J, CROSSLEY W, et al. Analytical solutions for the coupled thermoelastic vibrations of the cracked Euler-Bernoulli beams by means of Green’s functions[J]. International Journal of Mechanical Sciences2017128-129: 37-53.
17 ZHAO X, ZHAO Y R, GAO X Z, et al. Green?s functions for the forced vibrations of cracked Euler-Bernoulli beams[J]. Mechanical Systems and Signal Processing201668-69: 155-175.
18 ATTAR M. A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions[J]. International Journal of Mechanical Sciences201257(1): 19-33.
19 HSU M H. Vibration analysis of edge-cracked beam on elastic foundation with axial loading using the differential quadrature method[J]. Computer Methods in Applied Mechanics and Engineering2005194(1): 1-17.
20 MATBULY M S, RAGB O, NASSAR M. Natural frequencies of a functionally graded cracked beam using the differential quadrature method[J]. Applied Mathematics and Computation2009215(6): 2307-2316.
21 YANG B, TAN C A. Transfer functions of one-dimensional distributed parameter systems[J]. Journal of Applied Mechanics199259(4): 1009-1014.
22 YANG B. Distributed transfer function analysis of complex distributed parameter systems[J]. Journal of Applied Mechanics199461(1): 84-92.
23 ZHOU J, YANG B. Strip distributed transfer function method for analysis of plates[J]. International Journal for Numerical Methods in Engineering199639(11): 1915-1932.
24 LIU S B, YANG B G. A closed-form analytical solution method for vibration analysis of elastically connected double-beam systems[J]. Composite Structures2019212: 598-608.
25 NOH K, YANG B. An augmented state formulation for modeling and analysis of multibody distributed dynamic systems[J]. Journal of Applied Mechanics201481(5): 051011.
26 YANG B G, LIU S B. Closed-form analytical solutions of transient heat conduction in hollow composite cylinders with any number of layers[J]. International Journal of Heat and Mass Transfer2017108: 907-917.
27 FANG H F, YANG B G, DING H L, et al. Dynamic analysis of large in-space deployable membrane antennas[C]∥13th International Congress on Sound and Vibration (ICSV13-Vienna). Washington,D.C.:NASA,2006.
28 YANG B G, ZHANG Y C. A new method for mid- to high-frequency vibration analyses of beam structures[C]∥SAE Technical Paper Series. Warrendale: SAE International, 2019.
29 GIRIJA VALLABHAN C V, DAS Y C. Modified Vlasov model for beams on elastic foundations[J]. Journal of Geotechnical Engineering1991117(6): 956-966.
30 TADA H, PARIS P C, IRWIN G R. The stress analysis of cracks[M]. New York: ASME, 2000.
31 CHEN W Q, Lü C F, BIAN Z G. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation[J]. Applied Mathematical Modelling200428(10): 877-890.
32 DE ROSA M A, MAURIZI M J. The influence of concentrated masses and Pasternak soil on the free vibrations of Euler beams—exact solution[J]. Journal of Sound and Vibration1998212(4): 573-581.
33 ATTAR M, KARRECH A, REGENAUER-LIEB K. Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model[J]. Journal of Sound and Vibration2014333(11): 2359-2377.
Outlines

/